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Abstract

In this paper, o new training method for robotic re-
habilitation aids is proposed, in which only one neural
network (NN) is simultaneously used in order to iden-
#ify dynamic properties of a human-robot system and
give an assist to a trainee. The model used for iden-
tification of the dynamics of the human-robot system
consists of the NN and a reference model which repre-
sents a control property of a skillful operator. This pa-
per explains a working principle of the training method
and shows the validity of the proposed method through
experiments by unskilled operators.
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1 Introduction

Let us consider a prosthetic or orthosis system for .

physically disabled people {1] [2]. The goal of such sys-
tems is to realize effective human assists for a limited
motor capability of the operator with robotic manip-
ulators. To attain the goal, it is necessary to not only
establish the robot control technology for assisting a
human, but supply an effective training system for im-
proving the control ability of the human operator as
shown in Fig.1. In the present paper, as the first step
for realizing such a system, a basic training mechanism
for robotic rehabilitation aids is proposed.

One method for designing such a fraining system -

is to give technical assistance to a trainee in order to
alleviate a burden in the process of skill acquisition.
This kind of training is based on the idea that a hu-
man understands easily a given control task and char-
acteristics of a controlled system through appropriate
assistance, so that the speed of the skill acquisition
process would be accelerated. Several studies on such
a training system for a human operator have been re-
ported. ¥or example, Kraiss [3] proposed a method to
support a car driver using a neural network (NN). The
NN used in his method identifies the human charac-
teristics through learning. However, this method may
require a large size of the NN and cause difficulty dur-
ing the learning procedure. KrishnaKumar et al. [4]
developed a training system of helicopter hovering. S-
ince a desired control characteristic was not used as a
training target of the task, however, it is difficult to
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Training system

Figure 1: Examples of the training system using robot-
ic rehabilitation aids for the physically disabled

evaluate how much a trainee has acquired the control
ability and realized the desired characteristic well. Al-
so0, Suenaga [5] proposed a manual preview-predictive
control system which shows a future reference signal
and a predicted value of the controlled variable to the
operator. Although he showed that the method was ef-
fective in compensation for human delay and improve-
ment of the control performance, the validity of the
method is strictly limited because the human opera-
tor’s identified model is assumed to be linear.

In this paper, to solve the problems mentioned
above, a new training method is proposed. The pro-
posed method modifies a controlled output, that is,
trainee’s motion, in order to enhance task-performing
ability of a trainee, while identifying nonlinear control
characteristics of the overall system including the hu-
man operator by using the NN in real time. The model
used for identification of the human-robot system con-
sists of the NN and a linear reference model which
represents a control property of the skilled -operator.

This paper is organized as follows: Section 2 de-
fines the structure of a human-robot system used in
this paper, Section 3 describes a proposed adaptive
training system. In Section 4, some basic properties of
the training system are examined through experiments
with subjects.

2 Structure of a Human-Robot System

In such training systems including interactions be-
tween a human and a robot, a human should take an
initiative in performing a task, while the robot assists
him or her. This is also true in robot systems for as-
sisting human activities such as a master-slave manip-
ulator, a teleoperated robot and a power-assist robot.
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Figure 2: Human-robot system for robotic training

Figure 2 shows a block diagram of such a human-robot
SISO system, where r(t) denotes the desired signal,
e{t) the control error, f{f) the operational force gener-
ated by the human operator, ys(f) the robot’s position,
and p the differential operator [6]. The dynamic be-
havior of the robot is assumed to be regulated by the
impedance control [7].

During the training proposed in this paper, the op-
erator is asked to manipulate the impedance-controlled
robot with f(£) so as to minimize the control error e(t)
displaying on a visual feedback monitor. An transfer
function of the impedance-controlled robot R(p) [7] [§]
is given by

_ 1
RO = T B v & @

where M, B, K are the inertia, the viscosity and the
stiffness of the end-effector, respectively. Also, it is
assumed that the robot current position ys(t) almost
agrees with the desired position y(f) in a certain band
width of frequency so that G(p) =~ 1 is held.

3 Adaptive Training System
3.1 Formulation

In this paper, a human-robot system is dealt as a
discrete time system because the system is constructed
with a digital computer.

From Fig.2 under G(p) = 1, the kth output signal
of the impedance filter with a sampling interval A; is

given as
y(k) = R(z""H(z Ne(k), 2
where H(271) denotes a human characteristic and
R{z~') is a characteristic of the impedance filter.
Then, the term R(z~*)H(z™!) is expressed as
R(z"MH(E™) = 1+ Aru(e Ra(zHHA(TY), (3)

including an unknown multiplicative modeling error
Arg(z~1) [9], where Rn(z"1)Hn(z71) is the refer-

ence model, namely, the target training property of

the human-robot system.
~ On the other hand, an open-loop transfer function
with robotic assistance is defined as

R(z"MH(z"Y) =[1 - A,z HRE"HH(™Y), (@)

where A¢(z71) is a controller for robotic assistance.
So, if the target property Rn(z‘i)Hn(z“liis equiva~
lent to (4), the system output with the robotic assis-
tance agrees with one of the target property. From (3)
and (4), the following relationship can be derived:

ARE(Z'"I}

A.s(z_—l) = 14 ARH(Z_I).

(5)
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Figure 3: Block diagram of the proposed training sys-
tem

The modeling error Agz(z~'), however, is unknown,
so that it is impossible to obtain the controller for as-
sistance A,(z~1) directly. In the next section, a neural
network (NN) is introduced into the training system
to overcome this problem on Ay(z71).

‘3.2 Structure of the Proposed Training

System

Figure 3 shows a block diagram of the proposed
training system. The identification model consists of
the reference model R, (2~1)H,{z~') and the NN. The
output of the identification model y(k) is the sum of
the NN’s output yNN(k) and the reference model’s
output y»{k). The NN is trained in order to minimize
or locally minimize the identified error e(k) which is
the error between §(k) and y(k).

The assisting signal A, is defined using ywn (k) as

Dy(k) = aynn(k), (6)

where o (0 € o € 1) is the assisting ratio. By chang-
ing o, amount of the robotic assistance for a trainee
can be adjusted. Under a = 1, characteristics of the
training system is agreed with the reference model
R, (z~1)H,(271) as explained below. It can be ex-
pected that the effective training for a trainee can be
realized by adjusting o according to his/her control
ability.

Here, the dynamic behavior of this control system
is analyzed. Using (2) and (3), y(k) is expressed as

y(k) = yn(k) + Dyn(k), ™

where
yn(k) = Rn(znl)Hn(z‘I)e(k)’ (8)
Ayn(k} = ARH(Zbl)yn(k}- 9

Also, from (4), ys(k) is represented as

ys(k) = Ro(z"DH.(zYe(k)  (10)
= y(k) — Ay(k), (11)

where
Ay(k) = As(z_l)y(k)' (12)

Therefore, with (2), (3) and (12), the assisting signal
Ay(k) is obtained by

Ay(k) = As(z7 D)1+ Arr(z™H)]ya(k). (13)
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Figure 4: Experimental apparatus

Moreover, from (13), (5) and (9), the following equa~
tion is derived:

Ay(k) = Ayn(k)' (14)

On the other hand, ¢(k) can be calculated with Fig.2
and (7) as follows:

e(k) = 9(k) — y(k) =

If the NN is well trained, we can expect that the iden~
tified error €(t) becomes zero in (15). Consequently,
from (14) and (15), we have

Ay(k) = ynn (k). (16)

This reduces to {6) with @ = 1. In other words, the
assisting signal A, can be determined by the output
signal of the NN.

As a result, the proposed method can control a
human-robot system with a modeling error according
to the characteristics of the given reference model if the
NN learns to make the identified error €(t) in (15) into
zero in real time. It should be noticed that the pro-
posed method identifies the control property includ-
ing characteristics of the human operator. The rea~
son why we focused on the overall dynamic property
of the human-robot system is that it dose not change
so much, although the dynamic property of a human
changes greatly depending on the robot impedance
property [10]. For implementation of the proposed
training system, of course, the reference model as the
target property of the training is needed to be deter-
mined. Next section describes a method to defermine
the reference model in detail.

4 Experiments

4.1 Experimental Apparatus

Figure 4 shows an experimental apparatus for the
proposed training system with a one-degree-of-freedom
linear robot (NIPPON THOMPSON CO., LTD.: en-~
coder resolution is 2 [um] ). The robot adopts a mov-
ing magnet driving system which can control its driv-

ing force, where the maximum force is 10 x 9.8 [N}

The hand force generated by a human operator is mea-
sured by a six-axis force/torque sensor (BL Autotec
Co’'Ltd.: resolutions, force © and y axes, 0.05 [N]; z
axis, 0.15 [N}; torque, 0.003 [Nm]) attached on the
handle of the robot.

The target signal is a white noise filtered by the
second order Butterworth filter, where the cut-off fre-
quency is 0.5 [Hz]. A subject is asked to minimize the

3682

yNN(k) e Ayn(k} (15) )

Condition

input

o

Va6

output

y /’ (B

Hidden1 Hidden 2
Figure 5: The Elman network used in the proposed
system
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Figure 6: Examples of experimental results

control error e indicating on fhe display. In the ex-
periment, the damping coefficient ¢ of the robot was

set at { = W%; = -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5,

3.0, and the natural frequency wy, = \/-ﬁ—f} = 4 [rad/s]

with the robot stiffness X = 55 [N/m]. The maxirum
amplitude of the desired signal R = 0.1 [m]; the ex-
perimental time per trial is 60 [s]; and the sampling
frequency of data is 25 [Hz]. To avoid effects of the
external disturbance, output signals of the force sen-
sor and the NN are filtered by the Butterworth filter,
where the cut-off frequencies are 25 Hz and 3 Hz, re-
spectively.

The system utilizes the Elman NN [11] with a five-
layered structure including an input layer, two hidden
layers, an output layer and a condition layer (See Fig.
5): The number of units in the input layer is 1, in
the hidden layers 15 x 2, and in the output layer 1.
In the second hidden layer, the recurrent connections
with the condition layer (15 units) exist. An initial
value of the weight wy; is given in a uniform random
number under |wy;| < 0.01, and a learning rate of the
NN is set at 0.1. Alse, the szgmo:d function is used for
the units in the hidden layers and the condition layer,’
while the identity function is used for other units. It
should be noted that the NN are trained on-line, that
is, the weights of the NN are updated within one con-
trol sampling time (1 [ms]) using the back-propagation
through time algorithm {12].

Figure 6 shows an example of experimental results
by a novice and a practised operator with o = 0 un-
der ( = 3, K = 55 [N/m|, wn, = 4 [rad/s]. The top
figure in Flg 6 shows the time history of the desired



signal r, the second the controlled signal y;, the third
the control error e, and the bottom the force f. The
solid lines in Fig. 6 show experimental results with the
practised operator and the dotted lines with the novice
operator. The controlied signal of the novice operator
does not follow a high frequency component of the de-
sired signal. On the other hand, the controlled signal
of the practised operator follows much better.

4.2 Reference Model of the Human-robot

System

The proposed training system uses the reference
model of a human-robot system as a training target.
To determine the reference model, the dynamic prop-
erty of the human-robot system R(jw)H (jw) is es-
timated by means of the subspace-based state space
model identification method (N4SID) {13] [14] from
experimental results of the practised operator. Then,
the estimated describing function was approximated as
the following transfer function model [15], where each
parameter was estimated by the least squares method:

K,

Rn(p)Hn(p) = 1+ Top

e TP, (1

where K denotes the gain; 7, is the time constant;
and 7 represents the delay time of the system. For the
estimation of the parameters, 10 trials after consider-
able repeated practice were used as data.

Before estimating the dynamic property of the sys-
tem, to evaluate the control performance of the experi-
mental results, the following two control indices J and
U are calculated:

7= 7 ewa I 2@, (18)
o i}

v=1 Y Fdt/ r tf'rz(t}dt, (19)
¢

where J is a normalized square sum of the error e(t),
and U a normalized square sum of the hand force f (t)
during the trial time £;=60 [s
the calculated J and (; from the experimental results,
respectively. From these figures, it can be seen that J
is greatly increasing when { becomes negative, because
the subject must control unstable robot dynamics. On
the other hand, as { increases, U also greatly increases
because the subject needs large force to control the
robot.

Figure 8 shows the predicted response of the sub-
ject using the transfer function model defined in (17),
where the measured controlled signal y, of the prac-
tised operator and the predicted signal are shown. In
the middle, the solid line is the measured control sig-
nal ys, and the dashed line the predicted controlled
signal, where the predicted signal is an output of the
transfer function model when the control error e is giv-
en as an input. The predicted controlled signal almost
coincides the practised operator’s one and follows the
corresponding desired signal r.

In this paper, the reference model with the damping

coefficient ¢ = 1.0, which corresponds the minimum of

J shown in Fig. 7 (a), is used as a training target.
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Figure 7: Change of the control performance J and the
normalized square sum of hand force U of the practised
subject depending on the damping coefficient {. Mean
values and standard deviations for 10 trials are shown.
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Figure 8: Response of the estimated reference model
of the human-robot system ({ = 1.0)

Therefore, a novice operator is asked to perform the
most difficult training among the experimental condi-
tions used in this paper.

4.3 Experimental Results
4.3.1 Basic behavior of the proposed system

First, in order to confirm if characteristics of the
human-robot system under the proposed adaptive con~
trol with o == 1 would agree with of the reference mod-
el, a series of experiments were performed. Figure 9
shows an example of experimental results.

Each profile shows, in the order from the top, a
time history of the desired signal r, the control signal
y, the assisted signal y,, the control error e, the hand
force f, the assisting signal A,, and the identification
error €. It is clear that the trackmg ability was signifi-
cantly improved by adding assistance from the system,
although it was difficult for a novice operator to track
the given desired signal well by himself.

Next, Fig.10 shows the estimated describing func-
tions with experimental results. In this figure, the sol-
id line shows the reference model R, (jw)H,(jw), the
dotted line the estimated overall system characteris-
tics with the assisting signal, R(jw)H,(jw), and the
dashed line the system characteristics without the as-
sisting signal, R(jw)H (jw).

It was found that the gain chara,ctenstlc of
R(jw}H (jw) is considerably lower in the high frequen-
cy range than the reference model’s one, and that there
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Figure 10: Describing functions estimated from exper-
imental results under the proposed method

exists a serious phase lag in R(jw)H (jw). However, by
giving assistance, the gain characteristic is improved
in the high frequency range and the phase lag is also
compensated as shown in R;(jw)H,(jw). As a result,
we can see that the system characteristics with robotic
assistance almost agree with the one of the reference
model. The basic behavior of the proposed system has
been confirmed.

4.3.2 Change of the training effect by the as-
sisting ratio

In order to investigate the influence of @ on human
movements, experiments were conducted using the d-
ifferent assisting ratios as a = 0.8,0.6,0.4. Each sub-
ject who was not practised was asked to perform the
tracking tests in the order of a = 0.8, 0.6, 0.4. The
number of trials was three for each assisting ratio «
having the brief intervals when a was changed.
Figure 11 shows examples of the experimental re-
sults. The figure shows, from the top, the time history
of the desired signal r, the controlled signal y, the as-
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sisted signal y,, the assisting signal A, the identifica~
tion error e. In the figure, the solid line shows the case
of a = 0.8, the dashed line & = 0.6 and the dotted line
a = 0.4. As the assisting ratio decreases, the assisting
signal A, also does. However, it is interesting that the
assisted signals y, are almost the same in all a. This
is the training effects, since the subject has to control
by himself in order to keep y, almost the same.

In addition to two indices J and U defined by (18),
(19), an index on the control performance of a human
without robotic assistance is defined as

_ 73 . 3 9 iy Tz .
Jo = /0 (r(t) — y()?dt/ [0 (Mdt.  (20)

The difference between J and J, is caused by the as-
sistance. Figure 12 (a) shows J and J,, while Fig.12
(b) represents the normalized square sum of the hand
force U under the trial time £;=60 [s]. In spite of a
reduction of the assistance, the control performance
Jo was improved during the trials under o = 0.6 and
o = 0.4, that is, the control skill of the operator was
trained. It is found that the training under o = 0.8
is not effective since both J, and U increases. In all -
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Figure 13: Changes of the estimated describing func-
tions depending on the assisting ratio o

o, however, the control performance of the system, J,
is kept around 0.6. Therefore, the overall system is
always stable in these cases.

Finally, Fig.13 shows describing functions of the
human-robot system R(jw)H (jw) estimated from ex-
perimental results. In this figure, the solid line shows
characteristics of the reference model, the dotted line
the case of @ = 0.8 in the third trials, the broken line
o = 0.6, the alternate long and short dash line o =
0.4, respectively. In comparison between the cases of
a=0.6 and 0.4, the phase lag of the system increases
under o = 0.8. In other words, even if a human op-
erator achieves a large gain, the control performance
Jo becomes worse because of a large phase lag. From
the facts, it is shown that the operator changes his
own control property according to the degree of the
assistance, and that a desirable value of the assisting
ratio o is less than 0.6. It is expected that adaptive
adjustment of & according to the control performance
of a trginee improves the effectiveness of the proposed
method.

5 Conclusion

In this paper, the training method for robot reha-
bilitation aids using the NN has been proposed. The
proposed training system can identify human charac-
teristics using an adaptive learning ability of the NN,
and simultaneously assist an operator according to the
results of the identification in real time. From exper-
imental results with subjects, it was shown that the
proposed method can attain the desired control prop-
erty of a human-robot system with a modeling error,

and that the control ability of a trainee can be trained -

by using the proposed method.
. A notable feature of the proposed system is that
desired control characteristics can be expressed by the
reference model including in the identification model.
Therefore, by utilizing the motor control characteris-
tics of a healthy person as the reference model, the
system can be useful a physically disabled person who
uses a prosthesis or an orthosis as shown in Fig. 1.
Future research will be directed to develop an algo-
rithm of adaptive adjustment of the robotic assistance
« according to the level of trainee’s skill.
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