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Abstract

This paper discusses an EMG based conlrol method
of a robotic manipulator as an adaplive human sup-
porting sysiem, which consisis of an arm control pari,
" a hand and wrist control part and a graphical feedback
display. The arm conirol part controls jomnl angles
of the arm according to the position of the operator’s
wrist joint measured by a 3D position sensor. The
hand and wrist control part selects an active joini out
of four joint degrees of freedom and controls i using
an impedance model based on the EMG signals. A
distinctive feature of our method is to use a statisti-
cal neural network for, EMG pattern discromnation.
This neiwork can adapt to changes of the EMG pal-
terns according to differences among individuals, dif-
ferent locations of the elecirodes, time variation caused
by fatigue or sweal, and so on. It is shoun from the
ezperimenis thatl the hand and wrist molions can be
controlled based on the EMG signals sufficicutly. It
may be useful as an assistive device for a handicapped
person.

1 Introduction

Many robots have been developed and used in fac-
tories, plants and extreme environments, so far. They
support human workers and significantly veduce the
risk of accidents. In future, the number of the aged
and the physically handicapped requiring someone’s
help for everyday life will increase. It is expected that
the robots extend their work space not only to manu-
factures and extreme environments, but also to home
and office environments in order to support their daily
activities. If the robot of high intelligence is developed
for such people, it must be very useful [1}.

Up to the present, some investigations concern-
ing about human supporting robots and rehabilita-
tion robots have been carried out {2]-[5]. The studies
in this field can be classified into two groups: Oune is
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the extension of human ability using the robot, and
the other is the rehabilitation or prostheses/orthoses
for the physically handicapped based on the rohotics,
As examples of the former, Kazerooni [2] has proposed
“Extenders” as a class of robot manipulators which ex-
tend the strength of the human arm. Al-Jareah et al.
[3] has reported on a human arm-manipulator coordi-
nation using a compliant control method. As the later,
Salter [4] has designed a continuous passive mwotion
(CPM) device, which gently bends and straightens an
injured joint after surgery. Also, Querfelli et al. [5]
have proposed to install a robotic manipulator driven
by a pneumatic actuator in a wheelchair. However,
there are few previous researches dealt with adaptive
ability to changes of the operator’s conditions, and
many robotic orthoses have been designed customarily
considering on the operator’s individual dysfunction.
Moreover, if the operator uses the robotic orthoses for
many hours, the physical and mental stress of the op-
erator may increase because of its heavy weight and
volume.

Also, many researchers have designed prosthetic
limbs for amputee since the 1960’s. Especially, an
EMG signal has been often used as a manipulated sig-
nal of prosthetic hands such as Waseda Hand [6] and
Utha artificial 'arm {7}, which are the pioneers in this
field. The EMG signal includes information on not
only operator’s intended motion but also its force level
and mechanical impedance property of his or her arm
movements. For example, Akazawa et al. designed -
a signal processor for force estimation from the FMG
signal [8], and Ito et al. [9] used an amplitude inforia-
tion of this signal as the speed control command of the
prosthetic forearm. This prosthetic forearm was con-
trolled with three levels of the driving speeds. Also,
Abul-haj et al. [10] analyzed the characteristics of
the prosthetic control based on the impedance model.
Moreover, several EMG pattern classification methods
using neural networks have been proposed for the pros-
thetic control [11}-[12]. Hiraiwa et al. {11] have used a

* back-propagation neural network for estimation of five
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Figure 1: The EMG controlled robot
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finger motions. Most of previous researches, however,.

used only the on/off control of the prosthetic arms
depending on the results of the KM pattern discrim-
ination, or controlled only a particular joint depending
on the torque estimated from the KM signals.

On the other hand, Tsuji ot al. have been study-

ing on the estimation of impedance parameters from

the EMG signals [13], [14], the motion discrimination
using neural networks [15], and the EMG controlled
human supporting robot [18]. "Il human support-
ing robot consists of an arm control part, a hand and
wrist control part and a graphical feedback display.
The arm control part controls the joint angles of the
arm according to the position of the operator’s wrist
joint measured by a 3D position sensor. The hand and
wrist control part selects an active joind from four joint
degrees of freedom using the netiral network. Also the
graphical display provides visual information to the
_operator in order to help manipulator control. The
system uses the neural network for H MG pattern dis-
crimination, so that it can adapt itself to changes of
the EMG patterns according to the difference among
individuals, different locations of the electrodes, time
variation caused by fatigue or sweat. and so on. How-
ever, the on/off control was used depending on the
" EMG signals so that the manipulator imotion was not
natural, or rather artificial. . Also. since the gripper
of the manipulator was quite siniple, the shape of the
objects which could be grasped was restricted.

In this paper, the end-effector of the manipulator is
newly developed using a prostheiic forearm driven by
ultrasonic motors [9]. In order to realize the natural
feeling of control similar to that of the human hand,
the impedance model of human forearin is introduced
to the control system. Also the force level during the
motion is estimated from the EM(: signals and used
as the proportional control conunand to each joint.

2 EMG Controlled Human Supporting
Robot
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Figure 2: A link model of the robot

Figure 1 shows the components of the system which
are the robotic manipulator, the upper arm/forearm
control part and the feedback display. Move Master
RM-501 {Mitsubishi Electric Corp.} and the pros-
thetic arm (Imasen lab.) are used i the arm and
the end-effector of the manipulator. The size of the
manipulator is compact, which has 60 centimeters of
radius of revolution, and suitable for use in home envi-
ronments. The prosthetic arm is detachable from the
manipulator arm, so that it is possible for an amputee
to attach it to his or her amputated part. ;

The manipulator has 7°'d. o. I. shown in Fig. 2.
In this paper, the part from the first link to the third
link is called the upper arm: part. and Jy joint and
the end-effector are called the forearin part. The joint
angles (8,,8,,83) of the upper ar part are defined as
zero in the posture shown in Fig. 2 ().

- The control part consists of the upper arm control
part and the forearm control part. The upper arm
control part controls three joints (J,.J:.J3) accord-
ing to the position of the operator’s wrist joint mea-
sured by a 3D position senser, and the forearm control
part controls one joint (J4) of Move Master and three
joints (J5,Jg,J7) of the prosthetic forearn according
to EMG signals. The correspondence of the movement
of the operator’s upper limb with that of the manip-
ulator enables the operator to control the ranipula-
tor intuitively. During the manipulator control; the
3D graphical image of the manipulator and imforma-
tion on the EMG signals extracted by the EMG signal
processor are presented on the feedback display.

2.1 Upper Arm Control Part

In the upper arm control part, the 3D position sen-
sor (ISOTRACK II : POLHEMUS. Inc.) is used as
an input device. This device uses the electromagnetic
fields to determine its 3D position. The static accu-
racy is + 2.4 [mm] for z, y and z axes. [t should be
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Figure 3: Picture of the end-effector

Table 1: Specifications of the end-effector

Joint Motion Muvable range!Holding torqueGear ratio
I Spination / pronation 0~ 360" | 0.68Nm 5.8
J ¢ [Radial flexion / uinar flexion 0 ~ 60° 0.88 Nm 7.5

J; | Grasp / open 0~ 120" | 038Nm 30.1

noted that this device allows the operator to take an
arbitrary position having no occlusion problem. The
operator’s wrist position is measured with the sam-
pling frequency of 60 [Hz]. Then, the desired values
of joint angles of the upper arm (dy, 89, 83) are calcu-
lated and the corresponding joints are controlled by
the PID control method.

2.2 Forearm Contx:oi Part

The picture of the prosthetic forearm used as the
end-effector is shown in Fig. 3 and its specifications
are shown in Table I. Ut is almost the same size as
an adult’s hand, and the weight is about 1 [kg]. This
prosthetic forearm has 3 . o. f. (J5,J¢,J7: forearm
spination and pronation. wrist radial flexion and ulnar
flexion, hand grasp and open). and each joint is driven
by an ultrasonic motor (SINSEI Corp.). The encoder
attached at J5 and potentiometers attached at J¢ and
J7 are installed as the angular sensor of each joint. The
motor driving unit has a voltage controlled oscillators
so that the driving speed of the ultragsonic motors can
be regulated according to the voltage command.

The ultrasonic motor has several advantages, such
as light weight, high torque and silent motion. For
example, the motor noise of the prosthetic hand can
be significantly reduced. Also, the ultrasonic motor
has the capability of maintaining the torque continu-
ously against an environment even under the power-
off. This characteristic is well known as the self-
locking one. '

Figure 4 shows the structure of the forearm control
part, where four joint angles (4, - -, §7) of the manip-
ulator are controlled. This part estimates the opera-
tor’s intended motion and its force level based on the
measured EMG signals. For EMG pattern discrimi-
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nation, the log-linearized Gaussian mixture network
{LLGMN) [17] is used. The network can calculate the
posteriorl probability of each motion.

2.2.1  EMG Feature Extraction

First, the EMG signals mensured {rom L pairs of
electrodes (NIHON KOHDEN Corp.) are digitized
by an A/D converter (sampling frequency, ! [KHzj;
and quantization, 12 [bits]) after they are amplified
(70 [dB]), rectified and filtered out through the second-
order Butterworth filter UAF42 (BURR-BROWN
Corp., cut-off frequency : f... [Hz]). These measured
signals are defined as EMG(n) (i = 1,---,L). Next,
EMGi(n) (i = 1,---, L) are normalized to make the
sum of L channels equal I:

EMG;(n) — EMGS
L
Y (EMGi(n) - EMG)

i=1

zi(n) =

(i=1,---,L) (1)

where EMG? is the wean value of EMG;(n)
which is measured while refaxing the arm. The
LLGMN wuses the n-th input vector z(n) =
[z1(n), 22(2), ---, zg(n)]" € KL for EMG pattern
discrimination. In this paper. we assume that the anm-
plitude level of the EMG signal changes in proportion
to muscle force, and the systen uses the EMG ampli-
tude information for forearin coutrol. The force infor-
mation Fgarg(n) for the n-th input vector is defined
as

1§~ EMGiln) - EMGY
L & EMGP™ — EMGY’ @

Fgpe(n) =

where EMGT'%* is the mean value of EMG;(n) which
are measured while keeping the maximum voluntary
contraction. '

2.2.2 EMG Pattern discrimination

In the proposed system, the LLGMN is used for the
EMG pattern discrimination. First, the input vec-
tor z(n) € RE is preprocessed and converted into the
modified input vector X (n) € R¥ as follows:

X(n)

]

[I,z(n)T,xl(_n)'-" «L‘l(n)x2(n)) Y
zi(n)zL(n). 22(n)?, 22(n)za(n),
"‘;32(7‘)1'[4(’?-)3'“ lzL(n)z}T' (3)
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Figure 4: Forearm control part

The first layer consists of H = 1+ L{L +3)/2 units
corresponding to the dimension of X'(n), and the iden-
tity function is used for an activation function of each
unit. Bach unit of the second layer receives the out-

put of the first layer weighted by the coeflicient w}f‘m)

and outputs the posteriori probability of each compo-

nent. The input to the unit {lc m} in the second layer,
DL m(n), and the output, (FOg n(n), are defined as

H
= 3" M0oy(n)u™, (4)

h=1

wl!k.m(”)

exp(* I m(n)]

() -
Opm(n) = —— (5)
Z Z exp{ )Ikt m;(n)}
izim’=1
where w\* ™' = 0 (h = 1,.-- H). The third layer

consists of A" units corresponding to the number of
motions and outputs the posteriori probability of the
motion k£ {k = },.-- ). The relationship between
the input and the output is defined as

M,

By = Y D0xm(n), (6)
m=l .

Vi) = B (n). (7)

The system should be adaptable to any changes of
the conditions, because the EMG signal patterns are
different among individuals and change depending on
the electrical impedance of the skin, electrode loca-
tions, and so on [16]. Before starting the operation,
the LLGMN has to learn the EMG pattern vectors
z(n) for K forearm motions which are measured while
keeping each motion. It should be noted that the dy-
namics of a terminal attractor 18 incorporated into the
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learning rule in order to regulate the convergence time.
The convergence time is always less than the prespec-
ified upper limit so that the mental stress of the op-
erator waiting for the convergence of learning may be
reduced. Also, the on-line learning can be carried out
in order ‘to adapt the variations of EMG properties
resulting from muscle fatigne and sweat.

2.2.3 Discrimination Rule ,

Any human supporting robot has to be absolutely safe
for human. In order to reduce a risk of misoperation,
the discrimination is performed using the entropy of -
the LLGMN outputs and force information Fgpg(n).
Since the third layver of the LLGMN outputs the pos-
teriori probability of each motion k, the entropy is
calculated as

P
Hin) = ~Z¥’k{7;}iog2 Ye(n). {8)
k=

The entropy indicates, or may be interpreted as, a
risk of ill-discrimination. If the entropy is over the de-
termination threshold H4, the determination should
be suspended since large entropy means that the net-
work output is ambiguous. On the other hand, if the
entropy is less than Hy, the Bayes decision rule is
used to determine the specific class. Thus, possible
ill-discrimination can be reduced [16].

Then, in order Lo recognize the beginning of the
motions, the force information Fgyme(n) is com-
pa,reci with the motion appearance threshold F (k =

-, K). If Fearg(n) is over the threshold Fy, the
joins torque 7x(n) of the estimated motion is calcu-
lated as

. GelFema(n) — Fr) (Feme(n) 2 Fi)
rk(n) =

0 (Femg(n) < F),
(9



Table 2: Parameters of the impedance model used in
the experiments

Joint. i Motion(d) K j tNrvrad B j INewiradl { j Txem3t T 1Nw}

Jy | Heny/exennon )| 6.0 .Ut . DOUd (+F g T,
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TET GrasptS)/ apenten 40 02 . 0001 |+%/ %,

where (7; is the gain parameter which transforms the
foree information to the joint driving torque. The joint
torgue is equal to 0 if the force information Fgarg(n)
is less than Fy. '

2.2.4 Motor Control Part

The skiliful motion performed by the human forearm
and hand is realized regulating its impedance prop-

erty such as stiffness, viscosity, and inertia. A natural

feeling of control similar to that of the human arm
can be expected, if the robot control is performed on
the basis of the impedance control with human arm
impedance properties [14].

Lot us consider the incorporation of the impedance
model into the control system of the prosthetic fore-
arm. Here, the dynamic equation of the j-th joint of
human forearm is defined as

[;6; = 7; = K,;0; — B;6;, (10)

where / j'._ Aj. Bj are the inertia, stiffness, viscosity,
respectively: 75 is the joint torque; and §; is the angle
ol the J-th joint. '

In the motor control part, the manipulator’s fore-
artnn is controlled based on this equation. The j-th
joint angle 8;(n) can be measured by the angular sen-
sors. and 6 ;(n) can be calculated by the numerical dif-
ferentiation of 8;(n). Also the joint torque 7;(n) which
derived from 7¢(n) is estimated from the EMG signals
(9). so that the right side of (10) can be calculated.
Therefore, the desired joint angles of the forearm are
calculated by integrating (10) numerically. The joint
angles are controlled using the PID control method.

This method can be expected to realize a natural
feeling of control similar to that of the original limb, if
the impedance parameters are set to the similar values
to the human arm. In future, we would like to use
an impedance model which is experimentally derived
from human arm movements, where the viscoelasticity
changes depending on the EMG signals [14].

3 Experiments

We have conducted experiments to demonstrate
and verify the proposed system. Six forearm motions

(1) Flexion {2) Extention (3) Spination

{4) Pronation {5) Grasp

[NE

1wy (i) (2}

{33

L5 imVi

EMG signals [mV]

Estimated
torque {Nmj

Fr 2

angles {deg ]

Joint

0.0

Time {sec]

Figure 5 An example of the forearm control based on
the EMG signals :

“(Ja: Hexion and extention, Js: spination and prona-

tion, Jy: grasp and open) are controlled using the
EMG signals. Six pairs of surface electrodes (L = 8)
were atlached to the forearm and upper arm of the
subject who is a university student (male, age 23,
healthy). The determination threshold H; and the

‘motion appearance thresholds Fi (k= 1,---,6) were

settled as Hy = 0.25,Ffy = 069, F, = 042,73

046, F, = 0.83, F5 = 0.64, F5 = 0.62, and the num-
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ber of the learning data was N = 120 (8 motions,
20 for edch miotion). Also the cut-off frequency of
the Butterworth filter is settled as fu,: = 1.0 [Hz]
and the conversion gains Gy {(k = 1,.--,6) of the
force information Fgpg{n) to joint torque 7 are
Gy = Go = 0.30,Gs = Gy = 0.20,Gs = Gg = 0.36.
The impedance pararmeters and the relationship be-
tween 7 and 7; are shown in Table 2. The sampling
frequency for the control of the forearm is 100 {Hz],
and the 4th-order Runge-Kutta method is used as the
numerical integration (10).

Figure 5 shows an example of the forearm control



(@)

Figure 8: Pictures of the end-effector controlled by the
EMG signals

(b)

based on the EMG signals. The EMG signals are dis-
criminated for about 30 seconds. In the figure, the
EMG signals, the estimated joint torques r;, and joint
angles §; are shown. It can be seen that the opera-
tor can control the mampula.tor successfully using the
EMG signals. «

Finally, Fig. 6 shows motion pictures during the
manipulation. These pictures show three kinds of
hand motions which correspond to the points (a}, (b).
{¢) marked in Fig. 5. The joint angles are con-
trolled according to the joint torques estxmated from
the EMG signals successfully.

4 - Conclusion

The EMG controlled robotic manipulator has been
developed as an adaptive human supporting system.

Tn this paper, the end-effector of the manipulator was

newly designed using the prosthetic forearm driven by
the ultrasonic motors. Also the impedance model was

introduced to the control system in order to realize

the natural feeling of control similar to that of the
human arm. In the experiments, it can be seen that
the operator can control the manipulator successfully
using the EMG signal.

In the future, we would further like to attach some
force sensors to the manipulator in order to controi
motions reacted to external force. Also we wish to

conduct experiments with many subjects in order to .

make clear the effectiveness and the problems of this
system. »
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