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Abstract

A new tm;ectorz generation method for the dy-
namic control of robots is proposed in this paper. The
proposed method i3 d introducing the com-
bination of a time scale transformation with a time
base generator into the Artificial Potential Field Ap-
proach (APFA). This method can dctively control t
dynamic behavior of the robot without anEy change of
the t{orm of th:d designed mﬂf?ed i&melﬂ hﬁectiveness
e} € Ppropos method 18 very )
s{mtdations with an omnidirectional me robot.

1 Introduction

In the Artificial Potential Field Approach (APFA)
[1}-{4], the goal is represented by an artificial attrac-
tive potential field and the obstacles by corresponding
repulsive fields, so that the trajectory to the target can
be associated with the unique flow-line of the gradient
field originating at the initial position and can be gen-
erated via a flow-line tracking process. This method is
often used for the trajectory generation problem of ve-
hicles and manipulators because of its simplicity and
lower computation than other methods that are based
on global information about the task . However,
little attention has been paid to the control of the dy-
namic behavior of the generated trajectories such as
movement time from the initial position to the goal
and velocity profile of the generated trajectory.

For the disadvantage of the artificial potential field
approach mentioned above, H. Hashimoto et al. [4
grogosed a method using an electrostatic potent

eld and a sliding mode for a manipulator that can

regulate the movement time but not the dynamic be-

havior of a robot. Recently, T, Tsuji et al. {5] [6] pro-
fxxsed a method introducing the Time Base erator
TBG) into the APFA which can ate the move-
ment time and also the velocity profile of the robot,
but can not be applied to the dynamic control.
Generally, it is harder to develop the dynamic con-
trol of the robot than the kinematic control because of
the existence of a drift part in the dynamic system. In
fact, without respect to holonomy or non-holonomy of
the system, most previous studies have dealt with the
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%dnema.tic model for the trajectory generation prob-
em.

On the other hand, M. Sampei and K. Furuta é?]
showed that the stability of a system is preserved for
any time scale transformation as long as the defined
new time never goes backward against the actual time.
Then, they proposed the time scale transformation for
a linearized non-linear and applied it to the
trajectory path following problem of a non-holonomic
mobile robot [8]. © -

In this paper, we first show that the TBG method
[5] [6] developed for the kinematic model of the robot
15 equivalent to the time scale transformation with the

. time scale function composed by the TBG. Then a new

trajectory generation method is pro as a conse-
quence of reformulating the TBG method in view of
the time-scaling which can be applied to the dynamic
model of the robot. The proposed method can control
the dynamic behavior of the robot without any change
of the form of the designed controller itself.

This paper is or?.nized as follows; Section 2 points
out the general problems of the APFA. Then, the new
trajectory generation method based on the APFA is
explained in detail in Section 3. Finally, the propose
method will be applied to the dynamic model of an
omnidirectional mobile robot and the effectiveness will
be shown from computer simulations in Section 4.

2 Artificial Potential Field Approach
We consider the following dynamic linear system
with a drift part:

4 X = PX +QFx, ()

where
— 0n+n In+n — 0n+n
P (0n+n 0n+n i Q In+n !
X = (z7,27)T € ®2" is the state variable vector,

Fx € " is the input vector, 0,4, € R**" is the zero
matrix and I,4,, € R™*" ig the unit matrix.
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Inordertoclanf{ urpose in this paper, we
attempt to design the feegback control law Fx us-
ing the conventional APFA to stabilize the system (1)
asymptotically. In this case, the potential function
with quadratic form Vx can be defined as

_Vx=-§-XTKoX )
here Ko = diag. (ky, ks, - kay) under k >0 (i =
Lo on), Whes we (hioks k’"e)aedback oontrol(law
Fx on the potential function Vx as

Fx=-K; X, (3)

the time derivative of the potential function Vy yields

“"X='-XTK2XS0, (4)
where
k
K= 0 =7 Y na |,
0 0 ... g2
K = diag.(0,0,---,0,kn, knt1,° "+, k2n) -
H(moe, Vx is eontrolledtotheequihbnum int X=
0 by means of the feedback control law Fx given in

(3). Moreover, substituting (3) into (1), we can derive
the following linear damped system:

E+e+Ksz=0, (5)

where
ke kn
Kj= dx cve T}
3= (kn-i-l PP k2n)

Obviously, the system given in (1) totxcally,
stable under the designed feed! oontro er F’x Fol-
lowing the above discussion, we can conclude that it
is impossible to regulate the cetxmeand the
dynamic behavior of the vehicle as

3  Time Scaled APFA
Generally, the stability and dynamic pro of
systemshavenocha.ngemanytxmescaﬁt at is a
strictly monotone increasing function with respect to
the actual time [7]. This indicates that we can de-
sign the feedback control law to converge the original
iystem (1) to the equilibrium point at finite time ¢,
the ptotxc stabilizer for the system in the new
where infinite time corresponds to ¢y in the
actual time is found.
In this section, we present a detail of the proposed
method based on the APFA combined with the time
scale transformation.
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Fig. 1: Time history of ¢ and ¢ for the different pre-

3.1 Virtual time v and TBG
The relationship between actual time ¢ and virtual
time v is given by

-~ dy
L =y, ®)
where the continuous function a let)’ called the time
scale function {7}, is defined as f
o) =55, ¢

whae pisa pcsxtxve constant and £(t) is a non-
fum:tlon called the Time Base Generator

(TBG) %Ol)generates a bell-shaped velocity profile

and §(t) = O with the convergence
dynamics of {5 is defined as follows:

€= 11—, (8)

where v is a positive constant that can control the
convergence time t¢, and  is also a positive constant,

0<pB<10, whxchdetermmmthebehaworoff The
convergence time ¢ can be calculated with the gamma

function T'( - ) as
Ia-p) )

= jﬁ /0% T@=28)

Thus, the system converges to the equilibrium point

£ = 0 in the finite time t; if the parameter v is chpc?sen

as ‘
_rPa-p
T 4T(2-26)

Figure 2 show the time histories of ¢ and £
on convergence time t;y = 1.0,3.0,5.0 [s under the

parameter § = 0.5.

txmetf

(10)
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From (6) and (7), the virtual time v can be repre-
sented with respect to £ as follows:

Y= l " at) dt = —pln£(t) . (11)

It is obvious that the virtual time v given in (11) never
goes backward against the actual time t. We take
this virtual time » as a new time scale in time scale
transformation of the original system (1).
3.2 Time Scaling of the System

The system given in (1) can be rewritten in the
virtual time scale as

d, dXdt 1 .

Also, if we apply the state and input transformation

with the new state variable ¥ and the new input Fy

defined as
T r &
!F:(Wl,Wé,“', Wzn) =(m )';(t-j) ’(13)
: d {11\, 1 .
Fy = o (';(';)') x+ ;5'(‘{)'1‘)( s (14)
to the system (12), the new linear in the trans-
formed time scale is obtained as follows:
d
R—V-SP-PAP-{‘QFp . (15) '

As previously defined in the relation between actual
time and virtual time, stability of the new system
given in (15) is the same as the original system (1
in the actual time {7]. Hence, there exists a feed
control law to stabilize the new system (15) asymp-
totically.
3.3 Design of the feedback control law

In this subsection, we design the feedback control
law with the APFA to stabilize the new system fiven
in (15) in the virtual time scale. Here, we can define
- the potential function with quadratic form Vy for the
new system (15) as follows:

Ve =38TKo ¥ (16)

v If we define the feedback control law Fyp based on
¥ as :

Fp=—-K) ¥, (17)

the time-derivative of the potential function in the new
time scale yields «

d

= g7 <0.
dVng ’T Ko, <0

(18)

The new system is stabilized asymptotically by means

of the designed feedback controller Fy in the virtual
time scale.

(o] i
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Fig. 2: Omnidirectional mobile robot

By inverse transformation of the time scale from
virtual time v to actual time ¢ for the derived stabilizer
Fy with (13) and (14), we can obtain the followi
feedback control law Fy for the original system (1§

as:
a(t) )

Now, infinite time in the virtual time scale is corre-
m&%ﬂgm a finite time 1y in the actual time scale.
ore, the previous inverse time scale transforma- .

tion for the feedback controller Fy can be considered
as the compression of the virtual time scale. This im-~
jes that the state variable ¥ is converged to zero
gy the feedback control law Fx given in (19) at the

specified time .

4 'Trajectory generation of an omnidi-
rectional mobile robot

In this section, we apply the proj method to
the trajectory generation of an omnidirectional mobile
robot as an example and show its effectiveness from
some computer simulations.

4;1 Feedback controller for the vehicle

2 shows the omnidirectional mobile robot
has three omnidirectional wheels located at
the vertices of a cart that has the form of an equi-
lateral triangle enabling it to move omnidirectionally -
without any reorientation at each time instant. In the

a(t)

.

| Fy =—a®?(t) Kz x + (-—a(t) + . (19)

figure, 3, denotes the world coordinate system with
its origin set at the target point for the vehicle and
Y. denotes the moving coordi system fixed to the

vehicle with its origin set at the center of the cart.
The z. axis is oriented as the direction of motion of
the vehicle. Thus, we can choose the following gener-
alized coordinates of the vehicle: position (z,y) and
orientation angle 8 of X, with respect to Z,.

We denote the translational velocity in the z, y
direction and the rotational velocity of the robot, re-
spectively, as 9., ¥, and @, and the angular velocity
of each wheel as ¢y, d2, ¢3. The relationship between
the driving velocity vector v. = (¥, 9y,w)¥ and the



wheel velocity vector ¢ = (é1,¢2,63)7 is given by

where D is the radius of the wheel and L is the dis-
tance between the center of the vehicle and yvheel.s,
respectively (see Fig. 2). The kinematic relationship
between two velocity vectors represented in T, and ¥,
under the rolling-without-slipping condition is given

by ‘
&= RTv,, -~ {21)

where & denotes the time-derivative of the generalized
coordinate vector = (z,y,0)7 and R denotes the
rotational matrix with respect to 8 as

cosf siné O
R=1| —sné cosb 0 }.
0 D 1

The dynamic model under the assumption that no
friction exists along the axle is given with the gener-

alized force F,, F;, and 7 by
Mo (& “RTR{”) = For (22)

where F, = (Fy, Fy, 7)7, M, = diag.(m, +--§-{5§-,m..+
%f;;—,l’,+” I"), m, is the mass of the vehicle, I, is the
moment of inertia of the vehicle around the center of
the cart and I, is the moment of inertia of the wheel
around the axle. ’

Then, we can rewrite the dynamic equation given
in (22) as the following linear system:

d I ' 0
ax= (50 &)x+(Bn) ™ @

where the state variable vector X = (z7T, i{T)T € 78,
and the input vector Fx = M;'F, + RT R&. Thus,

applying the results of 3.3, we can readily obtain the
following state feedback control law Fx for the vehicle:

Fyx = —a(t)Kxz + (—-a(t) + 9@) £, (@9

a(t)

with the gain matrix Kx = diag.(§, £, £) under
k>0(i=1,2,---,6).

‘In the next subsection, the analysis on the dynamic
behavior of the state variable X of the system (23) is

4.2 Convergence of the state variable X

Substituting the feedback control law Fx given in
(24) into the original linear system equation given in

‘and § can be anal

§23), we have the second-order differential equation as
ollows:

.\ 2 . -
"=~—2§Ka:+ —»1§-+§'
E=-p (E) X {(p ) ; : x.

. (25)
Here, we first analyze the behavior of the vehicle on
the z coordinate. From (25), the following Euler’s

equation with respect to  and £ can be derived:

¢ o -G-neE P =0 ()

Solving the above non-linear differential equation
for z, the dynamic behavior in the = coordinate of the
vehicle is represented according to the discriminant of

the characteristic polynomial of (26), D, = 4% -1,
as follows:

(A)if D» >0
e
: 27
(B)if D, =0
x=a;o(1-§1ns)e¥. (28)
(C)if D, <0
z= ,;j’ 5 (af™ = ng) (29)
n=Eevo— D, o= "'f"p,

where g is the initial position of the vehicle in = coor-
dinate. Since the non-increasing function £ converges
to zero at finite time ¢z, the necessary and sufficient
condition to converge x, £ and £ to zero at the spec-
ified time ¢¢ is given as follows depending on the dis-

.

criminant D), :
(1)if Dy >0 then p > 4(1-5),

(2)if Dz <O then p > %,

The dynamic behavior of the other state variables y
yzed in the same manner. It can
be concluded that the feedback control law Fx (24)
designed using the proposed method can ate the
dynamic behavior of the mobile robot and the conver-
gence time {o reach the goal.
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Fig. 3: Generation of a straight trajectory
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Fig. 4: Time histories of position and velocity for the
ifferent prespecified time generated by the proposed
method (D, < 0)

4,3 Computer simulations
4.3.1 Generation of straight trajectories

In 4.2, it is proven that the dyramic behavior of
the vehicle is completely dominated by £. First of all,
let us consider the case of 2o = (20,0,0)7, i.e., the
initial position is on the z axis and the initial orien-
tation is 8 = O[rad] as shown in Fig. 3. Therefore
the y coordinate and the orientation 6 of genera.teci
trajectory will always be zero.

Figure 4 shows the time histories of z, £ and £ gen-
erated by the proposed method for the initial position
of the vehicle (xg = (=10 [m],0 [m],0 [rad])T) de-
pending on three different convergence times 5 = 1.0,
3.0,5.0 [s] under the parameters k /ks = 0.125 [s71],
F = (.5, p=8.0. In this case, the discriminant D, is
ess than zero, i.e., the dynamic behavior is dominated
by (29), thus generating an overdamped trajectory. It
can be verified from Fig. 4 that the vehicle generates
smooth trajectories and reaches the target position at
the specified time t;. This observation indicates that
the proposed method can naturally generate a straight
path for the vehicle with an easily controllable tran-
sient response via the parameters of the TBG.

Figure 5 shows the time histories of the potential
function Vx and Vy. In Fig. 5(3,), we can see that
Vx converges to zero at the designated time iy but
not monotonically. On the other hand, Vy is non-
increasing and converges to zero as shown in Fig. 5(b),
since the feedback controller is designed for the state
variable W in virtual time scale. It should be noticed
from Fig. 4 that the time histories of the potential
function depicted in Fig. 5 converges to zero at the
designated time ¢; in all cases.

—— by = 10
ety = 30{s)

_ —— Iy =500
W 100 +

s
tisy

— b = 1.O[s]
e by =308}
- i = 5008]

S
(b 13}

" Fig. 5 Time histories of potential function Vx and
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Vy for the different prespecified time
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Fig. 6: Change of the generated trajectories with the
di%erent sets of the feedback gains, k1 / ks and kz/ks
(Di SO: i=xsy)

Table 1: Feedback control gains used in the simulation

= R R e—
Set of Geine @ [@) @ @ ®
kst 025 | 025 | 025 | 0175 | 0125
kA 0125 ] 0175 | 025 | 025 | 025

4.3.2 Generation of curved trajeétories
Figure 6 shows the change of the generated trajec-
tories from the initial position xo = ,(77»2- [m], :% [m],

0 [rad])7 to the goal set at the origin of the world co-
ordinate T, with the different sets of feedback gains:
ky1/k4 for the z direction and ka/ks for the y direc-
tion as shown in Table 1. All sets satisfy the con-
dition that D; < 0 ({ = z,y) under the parameters
B =05, p=28.0andty=50[s]. It is verified that
the proposed method can generate various trajectories
by changing the feedback gains.

The change of the time histories of the generated
trajectories and the potential function Vx and Vy is



.
tis}

ies and time

temporal traj
- histories of potential function Vy for the different sets
of the feedback gains, k; /ks and k2 /ks

Fig. 7: The generated

shown in Fig. 7. The vehicle reached the target posi-
tion at the convergence time ¢y = 5.0 [s].

Figure 8 shows the simulation results generated by
the proposed method for several initial positions lo-
cated at different points on the circdle with a radius
of 7[m] and the initial orientation § [rad] under the
parameters k /ky = 0.125 [s7], ko/ks = 0.25 [s71],
k3/ke = 0.125 [s~1], 8 = 0.5, p= 8.0 and t; = 5.0 [g].
The vehicle reached the goal via generation of smoot
trajectories for all initial positions.

5 Conclusions 4

In this paper, the new -trajectory generation
method for the d ic model of robots using the
concept of the APEA and the time scaling transforma-
tion has been presented. In simulation results with the
omnidirectional mobile robot, the effectiveness of the
proposed method was ascertained. Since the
method can specify the necessary time that the robots
reach the goal, it may be useful for time scheduling
problems of a robot or the synchronous control of mul-
tiple robots.
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