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Abstract

This paper proposes an adaptive human-robot inter-
face using a statistical neural network which consists of
a forearm controller and an upper arm controller. The
Jorearm controller selects an active joint out of three
joind degrees of freedom and controls its driving speed
or grip foree according to EMG signals measured from
a human operator. The upper arm controller conirols
the joint angle of the upper arm according to the po-

sition of the operalor’s wrist joinl as measured by a

3D position sensor. Ezperiments have shown that the
EMG paiterns during forearm and hand movements
can be elassified with high accuracy using our network
1o be of use as. an assistive device for a handicapped
. person.

1 Introduction

Many robots have been developed for and used in
both manufacturing and extreme environments. They
support the human workers and significantly reduce
the risk of accidents, fatigue and stress to them. In
- future, the number of aged people and handicapped
people requiring support in their daily life and at their
workplace will increase. It is expected that robots will
extend their usefulness beyond manufacturing and ex-
treme environments, to the home environment pro-
viding support in our daily life and help in our daily
routines. A

For example, it 1s very difficult for some handi-
capped people, including traffic accident victims and
those suffering cerebral apoplexy and sc on, to do pre-
cise and complex activities by themselves. It is partic-

ularly impossible for a bedridden patient to actively

take part in daily life. If a robot is developed with
high intelligence and support capability, it cannot fail
to be useful. .

An effective human support requires complete iden-
tification of the operator’s conditions. Neediess to say,
essential functions of adaptability and safety are re-
quired, because an operator’s physical ability and dys-
function differ among individuals and change during

the rehabilitation training or the effect of the aging
process. In this paper, a new human-friendly intelli-
gent robot which can adapt to these difference among
individuals and also between operator’s physical abil-
ities is discussed. »
Up to the present, some investigation of human sup-
port robots and rehabilitation robots have been car-
ried out. Kazerooni [1] proposed "extenders” as a class
of robot manipulators which extend the strength of the

~ human arm. In his paper, the stability of the system

conststing of a human operator, the extender and the
object being manipulated is analyzed. On the other
hand, Nagai et al. [2] and Sakaki et al. [3] designed
a robotic orthosis for expanding the manipulation ca-
pability of the human limbs. These robotic orthosises
are being developed for rehabilitation of the disabled
who have lost a part of their manipulation capability
of the upper or lower limb. Noritsugu et al. [4] devel- -
oped a rubber artificial muscle actuator and applied a
two -degrees of freedom manipulator driven with this
actuator to the rehabilitation robot for the exercise of
the restoration of function. A rubber artificial muscle
is compliant and safe for a human in the contacting
operation. .

However, most of the previous researches on the-hu-
man support robot did not deal with the adaptation
to the operator’s conditions, so many robotic orthosis
were custom designed taking the operator’s individual
dysfunction into consideration. Moreover, if the oper-

~ ator uses robotic orthosis for many hours, the physical

and mental stress of the operator may increase because
of its heavy weight and volume. It is also impossible
for the operator to control the robot at a distance from
him. ,

In recent years, the bioelectric signals such as an
electroencephalogram (EEG) and an electromyogram
{(EMG) have been tried as an interface tool for virtual
reality and teleoperation devices, and as a communica-
tion tool for the handicapped person [5}-[9]. For exam-
ple, if an operator’s intended motion can be estimated
from the EMG pattern, a natural feeling of control
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Figure 1: The overview of the control system

similar to that of the natural limb may be realized.
We have already reported the pattern discrimination
of the bioelectric signals using neural networks, and
suggested its possible use as a human interface tool
[7-[9). - ’

This paper proposes-an EMG based control method
of a robotic manipulator as an adaptive human sup-
port system. A distinctive feature of our method is
to use a statistical neural network for EMG pattern

~discrimination. This network can acquire the stochas-
tic representation of measured EMG patterns through
learning, based on the log-linearized Gaussian mixture
model, so that it can adapt to changes of the EMG
patterns according to the difference among individu-
als, different locations of the electrodes, time variation
caused by fatigue or sweat, and so on. Experiments
-have shown that the EMG patterns during forearm
and hand movements can be discriminated with high
accuracy using our method.

2 The Structure of the EMG Confrolled
Robotic Manipulator

An overview of the robot system is shown in Fig. 1.
The robotic manipulator {Move Master RM-501 : Mit-
subishi electric, Corp.) has three degrees of freedom
both in the forearm and the upper arm. The control
system consists of the forearm controller, the upper
arm controller and the graphic feedback display. The
forearm controller controls six forearm motions (flex-.
ion, extention, pronation, supination, hand grasping,
hand opening)}, its driving speed and grip force accord-

ing to the EMG signals. The upper arm controller
controls a joint angle of the upper arm according to
the position of the operator’s wrist joint measured by
a 3D position sensor. Also the graphic display pro-
vides visual information via a 3D graphic interface to
the operator in order to help manipulator control.

This system uses the EMG signals and the position
of the 3D sensor which corresponds to the manipu-
lator’s wrist position as the control input, so that it
enables the operator to control the manipulator nat-
urally. The size of the manipulator is compact with
60 centimeters radius of revolution, and is suitable for
use in the home environment. The operator can con-
trol the manipulator using visual information via a 3D
graphic interface, even if it is placed out of view,

2.1 Upper Arm Control Unit

In the upper arm control unit, the 3D position sen-
sor (ISOTRACK 1I : POLHEMUS, Inc.} is used as
an input device. This device uses the information of
the electromagnetic fields to determine its 3D posi-
tion. The static accuracy is % 2.4 [mm] for the x, y
or z position. It should be noted that this device al-
lows the operator to take an arbitrary position having
no occlusion problem. The operator’s wrist position is
measured with the sampling frequency 5 [Hz], and the
joint angles of the manipulator are calculated using
this position. The correspondence of the operator’s
wrist position with the manipulator’s one enables the
operator to control the manipulator intuitively.

Let us now consider the control method of the
manipulator with the control input (o, yo, 20) corre-
sponding to the operator’s wrist position. The manip-
ulator’s wrist position (X}, Y1,Z,) is defined as

AYI Py
Yil=c| w (1
21 ot

: where ¢ = diag.[c, ¢y, ¢.] is the gain matrix. The sen-

sitivity of the manipulator’s motion to the operator’s
motion can be regulated using this matrix. Then, each
joint angle of the upper arm shown in Fig.1 is caleu-
lated. The waist angle 8,, is given as

@ = tan™? (%) , )

and the length r between the wrist joint and the shoul-
der joint can be expressed as

r= X2+ Y+ (2 - 1) (3)

Then, the elbow and shoulder angles 8., 8, can be
calculated:
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- According to these joint angles 6,,,6,,8,, the ma-
nipulator is controlled by the point to point control
method. The positioning accuracy is * 0.5 [mm)] for
the desired position.

2.2 Forearm Control Umt

Figure 2 shows the structure of the forearm con-
trol unit. This unit controls the forearm motion and
the driving speed or ‘grip force according to the EMG
pattern discrimination using the neural network.

In this control umit, the log-linearized Gaussian
mixture network (LLGMN) proposed by Tsuji et al.
[10] is used for EMG pattern discrimination. Note
that the log-linearized Gaussian mixture structure is
incorporated in this network through learning, thus
enabling network to calculate the posteriori probabil:
ity of each class.

2.2.1 Feature Extraction

First, the EMG signal measured from L pairs of
electrodes (Imasen lab.) is digitized by an A/D con-
verter {sampling frequency, 200 [Hz}; and quantiza-
tion, 12 [bits]) after that it is amplified (70[dB]), rec-
tified and filtered out through the first-order Butter-
worth filter (UAF42 . BURR-BROWN Corp., cut-off
frequency : 1 [Hz]). These measured signals, de-
fined as EMG;(t)(i = 1,---, L), are normalized every

T = 10 samples (0.05 [sec]) to méke the sum of L
channels equal 1:

n
Y (EMGi(t)- EMGSY
i{(n) . Lt=n~2;+1

> Y (EMGu(t) - EMGY

=1 tmn-T41

where EMG?* is the mean value of the EMG;(t) while
relaxing the arm. The LLGMN uses this element
zi(n)(i = 1,---, L) of the n-th input vector z(n) € RL
for the pattern discrimination. Also, in order to rec-
ognize the beginning of the forearm motions and con-
trol the driving speed or grip force, Power m,4(n) and
Force,mg(n) are calculated as

7

> }:(EMG,( )-EMG}'Y,

t=n—T+41 i=1
@)

1
Pou’fremg(n) =7

EMGi{t) — E'MG”
Forceemg(n) TL Z Z FACae
E

t=n-T+1i=1 EMGY'

: (8)

where EMG*® is the mean value of the EMG;(t)
during the maximum voluntary contraction. If

Powergmg(n) is over the motion threshold 6,,, the
input vector z(n) is discriminated, and the driving
speed or grip force is selected out of four possible lev-
els (0.1,0.2, 0.3, 0.4[m/sec] or 0.0, 20.0, 70.0, 120.0[N}])

according to the Forceemg(n).
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2.2.2 EMG Paitern discrimination

First, the input vector = € R is preprocessed and
converted into the modified input vector X € R¥ as
follows:

X(n) = [Lz(®)T,z:1(n)% z1(n)zs(n), -,
z1(n)zr(n), 22(n)?, 22(n)z3(n),
S ze{n)zr(n), - ,x;(n)z}T. 9

The first layer consists of H = 1+ L(L+ 3)}/2 units
corresponding to the dimension of X, and the identity
function is used for an output function -of each unit.
The second layer consists of the samne number of units
as the total number of the c‘omponents used in the
Gaussian Mixture Model. Each unit receives the out-
put of the first layer welghted by. the coefficient w(k
and outputs the posteriori probability of each-compo-
nent. The input to the unit {k, m} in the second layer,
It m(n), and the output, (PO ,n(n), are defined as

H
.(2)Ik,m(n) - Z (I)Ok(n)wg"m),‘ (10)
hx=l

: 2)
@0, p(n) = 2 hem]___ 4y

3 3 expl®lurmi(m]

Er=1m/=1

where ng’M") =0 (h = 1,---,H). It should be
noted that (11} can be considered as a kind of gen-
eralized sigmoid function. Finally, the third layer
consists of K units corresponding to the number of
classes and outputs the posteriori probability of the
class k (k = 1,---,K). 'The unit k integrates the
outputs of My units {k,m} (m = 1,---,My) in the
second layer. The relationship between the input and
the output is defined as

(3)Ik(n) — Z@)okm(n) - (12)
: Yk(n) = (3)13_.(71) s (13)

Now, let us consider the learning with the teacher
vector T(n) = (Ti(n),---,Tk(n), - -, Tk(n))T for the
n-th input vector z(n). The teacher signal is used
Ti(n) = 1 for the particular class k and Ty(n) = 0 for
all the other classes. As an energy function J for the
network, we use

N K -
=373 Ti(n)log Yi(n), (14)
n=1 k=1
and the learning is performed to minimize this, that
is, to maximize the likelihood function.

Here the dynamics of a terminal attractor {11] is
incorporated into the learning rule in order to regu-
late the convergence time. The concept of the ter-
minal attractor (TA) is invented on the basis of the
idea that the state of the dynamic system converges
to the equilibrium point in a finite time, if the Lips-
chitz conditions are violated at the equilibrium point.
The convergence time is always less than the prespec-
ified upper limit so that the mental stress of the op-

erator waiting for the convergence of learning may be

reduced.

Before starting the use of the robot, the EMG pat-
tern vectors x(n) for six forearm motions (flexion, ex-
tention, pronation, supination, hand grasping, hand
opening) of the operator are measured -during mo-
tions, which are used for off-line learning. Also, on-line
learning is carried out in order to adapt to the changes
of the EMG patterns according to the time variation
caused by fatigue or sweat, and so on.

2.2.3 Discrimination Logic of Forearm Mo-
tion Using Entropy

The human support robot has to be safe for hu-.
man use. Therefore, in order to reduce the ill-
discrimination, the entropy of the network output is
defined and used for the motion suspension rule. The
third layer of the LLGMN outputs the posteriori prob-
ability of each class & (k = 1,---, K), so that the en-
tropy is calculated from this posterion: probability,

X
H(n) = — Y Yi(n) log, Yi(n),  (15)
k=1

and the discrimination is performed using this entropy
[7]. The entropy indicates, or may be interpreted as, a
risk of ill-discrimination. For example, if the entropy
is over the determination threshold 44, the determi-
nation should be suspended since large entropy means
that the network output is ambiguous. On the other
hand, if the entropy is less than 84, the Bayes decision
rule is used to determine the specific class. Thus, pos-
sible ill-discriminations are expected to be reduced.

2.2.4 On-line Adaptive Learning

When the operator controls the manipulator for many
hours, it is necessary to consider the variations of
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Figure 3: An example of the EMG pattern discrimi-
nation results by the forearm control unit

EMG properties resulting from muscle fatigue, sweat-
ing and the change of electrode characteristics. There-

fore, it is required to find an on-line learning method.

adaptable to these variations, in order to discriminate
the EMG pattern successively at all times.

The problem is that we cannot ascertain whether
the estimated motion coincided with the amputee’s
intended one while controlling the manipulator. Thus
we cannot directly find the desired output, that is,
the teacher’s signal. Therefore, we utilize the entropy
H{n) defined as equation (15).

If the entropy H(n) of the output of the LLGMN
for the EMG pattern z(n) is less than the threshold of
the on-line learning 6,, a pair of z(n) and the output
motion is added to the set of the learning data, and the
oldest of the stored learning data is deleted. Then, the
network weights are updated using the new set of the
learning data. In the case where the energy function
J does not decrease during the first ten iterations of
the learning procedure, the weights are not updated
to avoid incorrect learning [7].

3 Experiments
3.1 Forearm Control Using EMG Signals

(@ 1= 180ec)

{a) Manipulator

{b) Human operator

Figure 4: The trajectory of the wrist joint of the hu-
man operator and the stick pictures of the manipulator

We have conducted experiments to demonstrate
and verify the proposed method. Four pairs of sur-
face electrodes (L = 4) were attached to the forearm,
7 crm from the elbow joint. The motion discrimination
threshold, the determination threshold and the on-line
learning threshold were settled as 0, =03 =9, =1.0
respectively, and the number of the learning data was
N = 120 (20 for each motion). The gain of the control
input were settled as ¢; = ¢y = ¢, = 2.0. ‘

In the experiments, we used a task that the ma-
nipulator took the pen lying on the-desk to the pencil
jar. The operator controlled the forearm and upper
arm of the manipulator using the EMG signals and
the 3D position of his wrist joint. Figure 3 shows
the discrimination results in the forearm control unit.
The EMG signals were discriminated while control-
ling the manipulator for about 40 seconds. In the fig-
ure, the motion pictures, EMG signals, Powere.mq(n),
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Figure 5: Improvements of motion discrimination
rates by the on-line adaptive learning

Force,my(n), entropy H(n) and the discrimination re-
sults are shown. It can be seen that the EMG pat-
terns are discriminated with high accuracy. The ill-
discrimination can be reduced using the determination
threshold 84.

Next, Fig. 4 (a) shows the stick pictures of the
manipulator and (b) shows the trajectory of the wrist
joint of the human operator which is measured from
the 3D position sensor, while controlling the manip-
ulator. The number (I, IV, V) of the motion pic-
tures in Fig. 4 are corresponding to the ones in Fig.
3. These figures indicate that the operator can con-
trol the manipulator successfully using the proposed
method.

Finally, we examined the effect of the motion sus-
pension rule and the on-line learning on discrimination
ability in the forearm control unit. The operator was
asked to continue to perform six kinds of motions for
about 36 minutes, and the discrimination rates were
calculated every 3 minutes. The operator was not in-
formed of the discrimination result.

The time histories of discrimination rates in the
forearm control unit are shown in Fig. 5. The dis-
crimination rates of the line (d) which did not use
the motion suspension rule and the on-line learning
decrease depending on time, because of the time vari-
ation of the EMG pattern caused by fatigue or sweat.
The lines (b), (c) indicate that the motion suspension
rule reduces the ill-discrimination. Especially, the dis-
crimination rate of the line (a) which uses both the
motion suspension rule and the on-line learning keeps
100% of the classification rate during the whole time
the operator was controlling the manipulator.

4 Conclusion

In this paper, the EMG based control method of a
robotic manipulator as an adaptive human supporting
system is proposed. In the experiments, the EMG
pattern during forearm and hand movements can be
discriminated with high accuracy using the proposed
method. '

Future research will be directed at developing tech-
niques to improve the adaptive human support robot
system, which includes the use of the impedance in-
formation based on the EMG signals.
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