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Abstract

This paper presents a Neuro-Based Adaptive Con-
trol (NBAC) for torque control of a flexible arm with
structural uncertainties. In the NBAC, a neural net-
work (NN) is connected in parallel with a linearized
plant model, so that the NN is expected to identi-
fy the uncertainties included in the plant. The NN
works as an adaptive controller simultaneously that
can compensate for the uncertainties. The NBAC is
applied to the torque control of a flexible arm that
includes linear and nonlinear uncertainties. Experi~
mental results illustrate effectiveness and applicabili-
ty of the NBAC.

1 Introduction

In recent years, applications of the neural network
to adaptive control have been intensively conducted.
The methods which have been proposed so far may be
classified into two approaches according to the num-
ber of the neural networks to be used.

The first approach utilizes a single neural network
in order to obtain a kind of the inverse model of the
controlled system, such as Yabuta and Yamada [1],
Kraft and Campagne [2], Carelli et al. [3] and Akhyar
and Omatsu [4]. In this approach, even if the adap-
tive controller of the controlled system is obtained by
learning of the neural network, the uncertainty in-
cluded in the controlled system cannot be obtained.
When the forward model of the controlled system is
necessary, the controlled system must be identified
again by using other identification techniques.

The second approach of the neural adaptive con-
trol utilizes multiple neural networks, such as Naren-
dra and Parthasarathy {5], Ku and Lee [6] and Liguni
et al. [7]. In this approach, one neural network is
dedicated to the forward model for identifying the
uncertainties of the controlled system, and the oth-
er neural networks may compensate for the effect of
the uncertainties based on the trained forward model.

However, multiple neural networks must be trained

and stability of the control system is quite difficult to
be assured.

In this paper, we propose a new neural adaptive
control scheme called Neuro-Based Adaptive Control
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{NBAC) that can realize adaptive control and iden-
tification for a class of controlled systems including
uncertainties using only a single neural network. The
neural network can identify the uncertainties includ-
ed in the controlled system and adaptively modify
the control input computed by a pre-designed con-
ventional feedback controller.

Then the NBAC is applied to a torque control prob»

lem of a single-joint flexible arm. While the flexible

arm contacts with a fixed object, we would like to con-
trol the joint torque of the flexible arm. In this case,
the dynamic characteristics of the flexible arm under
consideration nonlinearly depend on the material and
shape of the arm, contact force, contact friction and -
so on. It is very difficult to obtain the exact dynamic
model of the flexible arm beforehand, and a precise
torque control of the flexible arm cannot be achieved
by a conventional adaptive control technique. In this

- paper, the control performance and identification a-

239

bility of the NBAC are shown with the comparison
of the experimental results using a model reference
adaptive control and other neural adaptive control
methods. ~

2 Neuro-Based Adaptlve Con-

trol ,
2.1 Plant model

Consider a nonlinear discrete-time plant described
as the following single-input-single-output form

y(k) = Hp (2™ )u(k) + f(u(k)), (1)

where u(k) and y(k) are the input and the output of
the plant, respectively; f(u(k)) represents the non-
linear part; and Hp(z 1)u(k) represents the linear
part of the plant. The linearized model H(z™1) is
further supposed to be divided into a nominal model
Hp.(z71) and uncertainties Az,(z~1):

Hp(z™Y) = Hio(z~1) + Ara(z™),

where 2! denotes for the delay operator.
For the nonlinear part f(u(k)), it is assumed that
its linear approximation is given by

f(u(k)) 2 H* (™" Yu(k)

(2)

3)



From (2) and (3), the plant dynamics (1) can be

rewritten as

y(k) =~ Hp(z"Du(k)+ H* (2" )u(k)
= HEYu(k), @
H(z"') = Ha(z" Y1+ Ag(z7")], (5)
Ha(z') = Hpo(z"Y)+ H*(z7Y), (6)
. z-—l
anGy = GEE) ™

where Hn(z7!), Ag(z~1) are the known nominal

model and the uncertainty, respectively. We assume

that the structure of H,(z!) and Ag(2~!) can be
described by the following expressions:

_ 21
me = e ®)
An(z™Y) = 14 n a;z74, (9)
Je=1
Bi(z7!) = ib;z‘i, (an},‘ (10)
Ar(l) = %%;} (1)
: o
Ag(z™h) = 1+ ) a2, (12)
je=1
.
Ap(z7Y) = Y Bzt (b2,  (13)
) im0 )

where H,(z~!) is controllable; A,(z™1), Ap(z~1)
include unknown coefficients a;, 8;; and I{< n), h(<
m) are unknown orders of the polynomials A 4(2~1),
Ap(z~1). Note that appearance of the uncertainties
in the plant dynamics is changed from the additive
form (1) to the multiplicative one (5).

2.2 Adaptive Control Scheme

The block diagram of the NBAC of the discrete-
time plant with uncertainties (1) is shown in Fig. 1,
where r(k) is the reference signal and e(k) = r(k) —
y(k) is the error between the reference signal and the
output. The output F(k) of the identification model
is the sum of the nominal model output y,(k) and
the identified output yrp(k) that is the NN’s out-
put passed through the model H,(2~!) as shown in
Fig. 1. The NN is trained using the identified error
(k). Thus, the input u(k) is defined as

u(k) = ua(k) — ynn (k). (14)

Now, the behavior of the NBAC system is ex-

plained as follows. First, consider a special case when
‘there are no uncertainties in the plant (1), that is,
Ayu(k) = 0. The controller G,(z7!) for the model

Hn(z71) is designed to realize a desirable response.

Figure 1: Block diagram of the N BAC

The closed loop transfer function F,,(z™1) is described
as

y(k) _  Ga(z"DHa(:7Y)
(k) 14 Gu{z=V)Hp(z"1)’

F.z Y = (15)

Next, consider the general case of A,(k) # 0. The
controller G(z71) is defined as

G(Z"_l) = Ga(z7 N1+ Ac(z7Y)], (16)

where Ag(z™!) represents the modified value of the
controller G(z~1). Thus, the closed loop transfer
function F(2~1) that consists of H{z™!) and G(z™1)
is given as

Gz 1) H(z™!)
1+ G- D H(z-1)"

FzYH = (17
If (15) and (17) are equivalent, the response of
H(z™%) by G(z~') should accord with the desired

response. In this case we have the following relation
from (7) and (15):

Ag(z™!)

26T = 1A ey

(18)

‘On the other hand, by (16) the input u(k) =

'G(271)e(k) can be represented as

Gn(z™De(k) + Au(k),
Ac(g‘l)Gn{z’l)e(k).

u(k)
Ay (k)

(19)
(20)

Also, from (5), the output y(k) becomes

y(k) = Ha(z"Y)u(k)+ Ha(z~")A(k), (21)
Ay(k) Ag(z~)u(k), (22)

where Ay (k), Ay(k) are the modified value of the in-
put and the output of the uncertainties, respectively.
Substituting (19), (20), (22) into (18), we have

(23)

it

Au(k) = —Ay (k).
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Figure 2:

Neural network used in the NBAC

In the training process of the NN, the identified
error (k) = §(k) — y(k) can be described by

€(k) = Ho(z~ ) {uwn (k) — Ay ()}

If the NN is well trained, we can expect yyn(k) =
Ay(k). Consequently, we can see that the response
of the control system shown in Fig. 1 agrees with the
desired response from (14).

2.3 Neural Network
The multi-layer NN is used in the NBAC as shown

(24)

in Fig. 2. The number of units of the input layer

and the hidden layer are N and M, respectively. The
number of units of the output layer is one. In Fig. 2,
w;; (k) represents the weight that connects the unit j
of the input layer to the unit ¢ of the hidden layer;
v;(k) represents the weight that connects the unit i of
the hidden layer to the output layer’s unit; Wi(k) €
BRM*xN_ V(k) € RM*! are the weight matrices of
the hidden layer and the weight vector of the output
layer, respectively. The NN’s input vector Un(k)
={uy (&), ug k), - -, un(B)]F € R¥*! is defined as

Uin(k) = [u(k),ulk— 1), u(k 1),
Ay(k—1),-- -, Ay(k~ R)F, (25)

where N =1+ h+1.

Also, the unit j’s output of the input layer is de-
fined as I; = u;{k) (j = 1,---, N), the unit #’s output
of the hidden layer as

H; = o(s), (26)
N
s = Zj=1wijfj, 27)
and the sigmoid function as
o(z) = %tanh('y:t), (28)

where v is the positive parameter related with the

shape of the sigmoid function. Moreover, the output

of the output layer is defined as

O = o(x), (29)
M

K= Z vng. (30}
g==1

Figure 3: Flexible arm in contact with an object

The energy function for the learning of NN is

I(k) = %eﬂ(xc), (31)
which is minimized by changing the weights w;; and
v;. According to the error back propagation algorith-
1m [8], the weight updating rules at one sampling time
can be described as

Vk+1)=V(k) - qe(k)Hn(z"l)é-g—%—?é-?)—, (32)
Wk+1)=W(k)— ne(k)Hn(z'l)%f%g{ (33)

where n > 0 is the learning rate. The reference [9]

analyzes the stability of the proposed system.

3 Torque Control of a Flexible |

Arm

In this section, we apply the proposed scheme to

torque control of a flexible arm as shown in Fig.3.
‘While the flexible arm contacts with a fixed object,
we would like to control the joint torque of the flexible
arm in accordance with a reference signal.
. The rotational stiffness of the joint is largely
changed depending on the position of the contact
point [10]. When the distance from the joint to the
contact point is small, the rotational stiffness should
be large. When the contact point goes away from the
joint, the joint becomes less stiffer. Thus, the dynam-
ic characteristics of the flexible arm under considera-
‘tion nonlinearly depend on the contact point as well
as the material and shape of the flexible arm, contact
force, and contact friction.

3.1 Experimental Device

An experimental device for the torque control of
the flexible arm is shown in Fig. 3. The arm is steel,
0.32 min length and 0.8 mm in diameter. The torque
sensor of a semiconductor gauge is glued on an alu-
minum sheet. When the arm contacts with a fixed
object, the torque 7(k) at the joint of the arm can
be measured by the torque sensor. The actuator is
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Figure 4: Measured and predicted torque of the flex-

ible arm

velocity-controlled with the desired angular velocity
#a(k) of the joint. It should be noted that the driving
torque of the actuator cannot be controlled directly.

For this experimental device, we consider a plant
described by

(k)= Ha(z" D1+ Ag(z™)u(k),  (34)
where u(k) and 7(k) are the input to the actuator and
the joint torque of the flexible arm, respectively; and
H,(2~?) represents the linear nominal model that is
estimated from measured data by using a convention-
al identification technique as follows.

The desired angular velocity 64(k) is considered as
the input to the flexible arm, so that the transfer
function from 64(k) to the torque T{k) can be ap-
proximately described by

K,K;

1= ey

(35)

where K is the gain and {, is the time constant of

the velocity-controlled system, and K is the elastic
constant of the arm. The discrete form of (35) is given
as

b1zt 4 by z=2

H zv"l = .
n( ) 1+az=t +ay272

(36)

In order to identify the parameters of (36), the con-

tact point L= 0.20 m is chosen and the arm is fixed to
the environment. The rectangular input signal with
its amplitude of 2.0 x 1074 rad/s and a period of 0.5 5
is used as @, after passing through the first-order low-
pass filter with a cut-off frequency 5 Hz. The joint
torque is measured with the sampling frequency 100
Hz. :

The identified values of the model parameters are
determined as 4,=-1.20296, 4,=0.20121, 51 =0.03063,
b,=0.07341. The response of the nominal model with
.the identified parameters is shown in Fig. 4 as the
thick line. From Fig. 4 we can see that the error
between the output of H,(z~!) and the measured
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Figure 5: Experimental results of the torque control

of the flexible arm with L=0.20 m

torque of the flexible arm with L = 0.2 mis increasing
with time.

Using the same experimental device, the fixed po-
sition L of the arm is changed. The measured resulis
are also shown in Fig. 4. Here, the alternate long
and short dashed line represents the result with 1=

-0.12 m and the dashed line represents the result with

L= 0.32 m. When the contact position L is varied,
the joint torque becomes significantly different from
the output of the nominal model with L= 0.20 m.
In the next subsection, the proposed scheme using
the identified parameters for L= 0.20 m is applied to
the torque control of the flexible arm with different
contact positions.

3.2 Control Performance

In the neural network used in the experiment, the
initial value of the weight is set as an uniform random
number in [~1.0 x 1073, 1.0 x 1073]. The learning
rate is 9==0.05 and the parameter v of the sigmoid
function is v=1. In order to cover the maximum order -
(p=2, ¢=2) of the uncertainties Ag(z~1), the neural
network consists of five units in the input layer, and
ten units in the hidden layer, and one unit in the
output layer. Also, the reference signal r(k) is of a
rectangular form with its amplitude of 2.0 x 1074 Nm
and a period of 5 5. The feedback controller G,,(z~1)
is Gn(2~1)=1, and the sampling time and the control
duration are 0.01 s and 100 s, respectively. The pro-
posed scheme is applied to 6 different contact points

" that are L =0.12, 0.16, 0.20, 0.24, 0.28, 0.32 m.

Figures 5, 8, 7 show the experimental results corre-
sponding to the case of L=0.20 m, L=0.12 m, L=0.32
m, respectively. In all cases, the dashed lines repre-
sent the results corresponding to the use of the feed-

- back controller (FBC) Gp(2~?), the thick lines the
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results by the proposed scheme (NBAC), the thin
lines the results obtained with the model reference
adaptive control (MRAC) [11]. In the MRAC, as
the reference model and the controller, the nominal
model H,(271) of (36) with the identified parameters.
(L=0.2 m) and G,(27!) = 1 are used.

In Fig. 5, due to the fact that the same value of
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Figure 6: Experimental results of the torque control
of the flexible arm with £L=0.12 m

L=0.20 m is used for identifying the nominal model,
the experimental results obtained under three control
methods are not obviously different.

However, when L is varied as shown in Fig. 6 and
Fig. 7, the feedback control by using G,(z™!) pro-
duces significant overshoot or undershoot. The mod-
el reference adaptive control works well for linear pa-
rameter perturbation, so that it can improve the con-
trol performance slightly. On the other hand, the
proposed scheme always produces stable responses.
It should be noted that the identified parameters of
the nominal model for L=0.20 m are used for all cas-
es.

3.3 Identification Ability

The other feature of the proposed scheme is that
it can construct the identification model for the con-
trolled plant (see (k) shown in Fig. 1). So we investi-
gate the identification ability of the proposed method
for the contact point L=0.12 m after learning of 100
s which is corresponding to Fig. 7.

Figure 8 shows the identification model’s output
y(k) for the same input signal as shown in Fig. 4.
It should be noted that the identified parameters for
L=0.20 m are used as the nominal model H,(271).
We can see that the adaptive control and identifica-
tion for the controlled plant can be achieved using
only a single neural network simmltaneously.

3.4 Comparison

In this subsection, the proposed method is com-
pared with other neural adaptive control methods,
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Figure 7: Experimental results of the torque control
of the flexible arm with [=0.32 m
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Figure 8: Identification ability of the NBAC

which are the self-tuning neural adaptive control (ab-
breviated as STNC) [4], the feedforward neural adap-
tive control (FNAC) [3], and the parallel neural adap-
tive control (PNAC) [2]. Figure 9 shows three block
diagrams of STNC, FNAC and PNAC, respectively.
It should be noted that the direct neural adaptive
control [1] did not result any stable learning in our
experiments.

Experimental conditions are the same as the ones

described in the subsection 3.2 except for the control

duration 60 s. The mean square error E,, during the
one period of the reference signal, that is

500 :
En_.—-ze [500(n— 1)+ k] (n=1,2,---,12),
(37)
is computed for each control method. The sampling

frequency is 100 Hz.

Figure 10 shows comparisons of the learning his-
tory. The learning speed of the proposed method is
faster than those of other control methods. STNC,
PNAC and FNAC need to learn the inverse mwodel,
while the proposed scheme requires to learn only the
uncertainty included in the forward model of the con-
trolled plant. Thus, the learning load of the proposed-
scheme is much less than the ones of other control
methods.
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Figure 9: Block diagrams of the adaptive control sys-
tems using neural networks

4 Conclusion

In this paper, a Neuro-Based Adaptive Control of
a discrete-time plant with uncertainties has been pro-
posed. Then, the NBAC was applied to the torque
control of a flexible arm in contact with the environ-

ment. Even though the parameters of the flexible ar--

m were largely varied, the joint torque was controlled
adaptively. Experimental results illustrated effective-
ness and applicability of the NBAC. In future, we
plan to extend the NBAC method for a nonlinear
plant.

The authors would like to thank Mr. Naohiro Ueno
of Hiroshima University for providing us his experi-
mental devices.
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