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Abstract

This paper proposes a paitern classification method
of time-series EEG signals using neural networks.
To achieve successful classification for non-stationary
EEG signals, a new network structure that combines
a probabilistic neural network and recurrent neural fil-
ters is used. This network is suitable {o ezpress sta-
tistical and time-varying characteristics of time-series
EEG signals. In the experiments, two types of photic
stimulation caused by eye opening/closing and by ar-
tificial light are used to measure the EEG data. It
is shown that the proposed network can achieve high
classification performance.

1 Introduction

An EEG signal pattern changes depending on exter-
nal or internal factors such as photic stimulation, audi-
tory stimulation, and intentions of movements. These
‘factors may be used as an interface in virtual reality
and tele-operation devices, or as a communication tool
for handicapped persons if the operator’s intention can
be estimated from the EEG pattern.

Up to the present time, some investigations of EEG

pattern classification using neural networks have been

carried out in [1]{2]. Most of them, however, dealt
with research on an automatic diagnosis in clinical
medicine, and only few studies were concerned with
developing a new interface tool [3]. In case of the
pattern classification of EEG signals using back prop-
agation neural networks [4], the networks need a large
number of training data, learning iterations, and a
large scale of structure. Also, it is very difficult to
attain high classification performance.

On the other hand, we had already proposed an

EEG pattern classification method [5] utilizing a prob-
abilistic neural network called Log-Linearized Gaus-
sian Mixture Neural Network (LLGMN) [6]. This net-
work can construct the statistic model of the EEG sig-
nals through learning and improve classification abil-
ity. This method, however, does not consider the time-
varying characteristics of the EEG signals, so that

{EEE International Workshop on
Robot and Human Communication
0-7803-3253-9/96 $5.00 ©1996 IEEE

] B

o £

2 g
50| g 2

& §

|| A

xmer’ Y(n)ex

Figure 1: Structure of the proposed network

‘classification performance may decrease because of the
non-stationality.

In order to. classify the time-varying EEG signals
accurately enough, the present paper proposes a new
network structure considering statistical -and time-
varying characteristics of the time-series EEG signals.
To construct the statistical model and optimal filter
using neural networks, the LLGMN [6] and recurrent

-neural filters [7] are used in our approach.

2 Method
2.1 Network Structure

Figure 1 shows structure of the proposed network.
First, the EEG signal S(t) is pre-processed and con-
verted into the input feature vector z(n) € R4 (n =
1,---,N). Next, the LLGMN receives it, and outputs
the posteriori probability ¥Y(n) € ®% (n =1,---,N)
of the input feature vector belonging to each class.
Then the neural filter modifies this posteriori proba-
bility. Finally, the Bayes decision theory is used to
determine the specific class.

‘A) Log-Linearized Gaussian Mixture Neural

Network

The structure of the LLGMN [6] is shown in Fig.
2. This network is of feedforward type and contains
three layers. First, the input feature vector z(n) is
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Figure 2: Structure of the LLGMN

transformed into the modified vector X(n) € R¥(H =
1+ d(d + 3)/2) in order to represent the probability
density function corresponding to each component of
the Gaussian Mixture Model (GMM) [8] as a linear
combination of X (n):

X(n)y = [, z(n)T, z;(s)’,z;(n)zg(u), e,
21()za(n), 22(n)?, za(n)zs(n)
e, za(n)za(n), -, za(m)1T. (1)

The first layer consists of H units corresponding to
‘the dimension of X (n) and the identity function is
used for activation of each unit.

The second layer consists of the same number of
‘units as the total component number of the GMM.
Each unit receives the output of the first layer
weighted by the coefficient wgb'“" and outputs the pos-
teriori probability of each component. The input to
the unit -{k,m} in the second layer, (I} ;u(n), and
the output, POy (1), are defined as

H
DL m(n) = zwg""“)(")Oa(n)y )
h=1
2)
(Q)Ok,m(n) = — :2)[( T m(n)] . (3)
3o Y e[ L ()]
El=lmi=l

where (10, (n) denotes the output of the h-th unit
in the first layer, and wiK’M“): 0(h=1,---,H).
It should be noted that (3) can be considered as a
generalized sigmoid function.

Finally, the third layer consists of K units corre-
sponding to the number of classes, and outputs the

Figure 3: Structure of the NF

posteriori probability of the class k (k = 1,---,K).
The relationship between the input and the output in

the third layer is defined as
M,
OL(n) =) @0tm(n), 4
m=1 .
Yi(n) =@ I(n). 5)

In the LLGMN described above, the posteriori
probability of each class is defined as output of the last
layer. Note that the log-linearized Gaussian mixture

‘structure is incorporated into the network by learning

the weight coefficients w{ ™.
B) Neural Filter

Figure 3 shows the structure of the neural filter
(NF) [7]. The unit in the first layer receives the n-th
outputs Yi(n) of the LLGMN, and send (Dui(n) to
the second layer. The identity function is used for the
activation function in the first layer.

The second layer consists of B units. Each unit re-
ceives the n-th output of the first layer and the (n-1)-
th output of the second layer. Also, each unit in this
layer has the bias input (8 = 1). The fully intercon-
nected units keep the internal representation so that
the time history of the input data can be taken into
consideration. The input to the unit b in the second
layer, @r(n), and the output, Pv}(n), are defined
as

B
@rin) = 3D Duf(n-1)

a=1
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+1 Dyt Dy, (n) + @y,  (6)

(2)0201) = g((’)rz(n)). (7)

where Dy (124} and (Duf denote the weight co-
efficients between the a-th and the b-th unit in the sec-
ond layer, between the unit in the first layer and the
b-th unit in the second layer, and between the bias in-
put and the b-th unit in the second layer, respectively.
The activation function g(z) is the sigmoid function
defined as g(z) = 1/(1 + exp(—=2)). The unit in the
third layer is connected to all the units in the second
layer, and the relationship between the input and the
output of the unit is defined as

B .
(s)fk(n) = E(zts)ui(g)v:(n)‘ (8)
b=l
Oy (n) = o@ra(a), )

where (s)ry,(n) and ®y;(n) denote the input and the
output in the third layer, and ?®u} denotes the
weight coefficient between the b-th umt in the second
layer and two units in the third layer.

The identity function is used as the activation func-

tion in the fourth layer, and the output is defined as .

By (n) = Gy, Clyy (), (10)

“where 3y, denotes the weight coefficient between

the third layer and the fourth layer. Note that the

weight coeficient (3%y, functions as a gain.

2.2 Learning Algorithm

If the teacher signal is given only to the output unit
in the NF, the error may ba.ck-propagate from the NF
to the LLGMN, so that the learning is performed for
both the networks at the same time. However, the
appropriate error back—propagatxon between the NF
and the LLGMN can not be guaranteed because of
the complexity of the network structure.

Therefore, we introduce the following two step
learning schedule that divides the learning into the LL-
GMN and the NF. First, the LLGMN is trained using
the training data in order to construct the statistical
model of the training data. Then another set of the in-
put feature vector z(n) is given and the LLGMN out-
puts the posteriori probability Yi(n) (k = 1,---,K).
Next, each NF is trained using this output data and
the teacher signal T;(n) (k = 1,---, K) given for each
output unit in order to construct a kind of the optimal
filter.

A) Learning Rule of the LLGMN

Now, let us consider the supervised learning with
the teacher vector T'(n) = (Ti(n),- -+, T(n), -,
Ti(n))T for the n-th input vector z(n). When the
teacher provides perfect classification, Ti(n) = 1 for
the particular class k and Ti(n) = 0 for all the other
classes. As an energy function for the network, we use

N
> Jn
”=1N K
=3 " Tu(m)log Yi(n),  (11)

n=1 k=1

J =

It

and the learning is performed to minimize it, that
is, to maximize the likelihood. For z(n), the weight
modification Aw}f"") of the corresponding weight
w*™(h =1,.,H) is defined as

aJ, '
Yh

in a sequential learning scheme, and

A = g 3 2 (13
Yn """712:8 o) ! )
n=1 9,

in a collective learning scheme. Here, 71 > 0 is the

learning rate.

B) Learning Rule of the NF

'The energy function for the k-th NF is defined as

N
k=Y Ei= Z S(@u(n) ~Te(n)?, (19
naxl n=1 R

where T3(n) is the teacher signal for the output of the
E-th NF. The learning is performed to minimize this
sum of the square errors. The weight coefficients from

- the fourth layer to the second layer are modified us-

ing the error back propagation learning.  On the other
hands, in’ the first and second layers, the weight coef-
ficients are modified using the error backopropagation
through time [4] because of the interconnection in the
second layer, Accordmg to this algorithm, the weight
modification A(3?u2? in the second layer is defined
as

N )
SEk
A(2,2)u¢l,b — . ._.___'.‘.....-’ 15
k ’)22:1: 8(2.2) u:,b . ( )
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oE:
3t = 3 ORePe-1), (1)

p=n-~—4

where 1 > 0 denotes the learning rate. In the present
paper, the history of the input data is considered back
to four steps. Also the weight modification APy}
can be calculate in the same way.

The generalized error (D} (p) is the sensitivity of
the square error EX to the input ®r}(p), which is
defined as the followmg recursive calculation:

@5l (p) = ¢'(Dri () Del(p), (17)

. B ‘
(2)82(},, -1)= Z(?.z)u:&(z)gg(p), (18)

a=1

Note that, the sensitivity of the square error E¥ to the
n-th output Pvl(n) is calculated as

Del(n) = B} Osi(n), (19)

where ®)§;(n 2 is the sensitivity of the square error E¥
to the input (r.(n), and ms,,(n) denotes the sensi-
tivity of the square error EX to the output (3395(:1)
Also, ¢’(z) is the derivative of the sigmoid function.

38 Experiments
3.1 Experimental Apparatus [5]

To examine the use of the EEG signals as a human
interface tool, simple and handy electroence phalo-
graph (IBVA, Random ELECTRONICS DESIGN) is
used. This enables us to measure EEG signals in usual
environments. The experimental system consists of
the head band, the transmitter, and the receiver,

The transmitter is attached to the head band. The
time-series EEG signals measured from the electrodes
are digitized by the A/D converter (the sampling fre-
quency =120Hz, quantization = 8bits) after they are
amplified and filtered out through hxgh~pass (3Hz) and
low-pass (40Hz) analogue filters. The size of the trans-
mitter is quite compact (93mm x 51mm x 25mm).
The personal computer, which is connected to the re-
ceiver, collects the data. The surface electrodes are
located at Fpl and Fp2 that are specified by the In-
ternational 10-20 Electrode System. The noise in the
EEG signals can be removed significantly by the bipo-
lar derivation between the two electrodes at Fpl and
Fp2.

Table 1: Frequency ranges used in the classification
experiments

quucncy ranges (ji{z)

0~8 | 9-.35 - - o

O~n8 | 9420 12135 - -

08 | 9~12 113~.20121~.35 -
Ornd | S8 | 912 113~.20]121~35 -

0~ | 3~4 | S~8 | 9~12 |13~20(21~35
X1 X2 X3 X4 Xs Xs

d :Dimension of the input vector

t§ ot

O\Uﬁ&ww;&

3.2 Experimental Conditions

The time-series EEG signals are measured under
the following two conditions,

[1] Photic stimulation by opening and closing eyes

Subjects are seated in a well-lighted room. First,
the time-series EEG signals are measured during both
eye opening and closing (60 seconds for each). The
measured signals are used as training data. Next, sub-
jects are asked to switch their eye states alternatively
according to the pseudo-random series for 450 seconds.
[2] Photic Stimulation by the artificial light

Subjects are seated in a dark room, and open their
eyes. An artificial flash light (xenon, illuminating
power: 0.176[J]) is set at the distance of 50 ¢cm apart
from their eyes. The light turning on and off with the
frequency 4Hz is used as the artificial photic stimula-
tion.

‘The power spectral density function of the mea-
sured time-series EEG signals is estimated using FFT
for every 128 sampled data. The function is divided
into several ranges (from 0 to 35Hz). The. frequency
bands of this range are determined based on the clin-
ical use of the brain wave (5,0,a,8). Time-series of
the mean values of the power spectral density function
within each frequency ranges are calculated and nor-
malized between [0, 1] in each range. Thus, the multi-
dimensional data (z1, 72, -+, z4) are obtained and

‘used as the input feature vector to the networks. Here

d denotes the number of the frequency ranges. The
frequency ranges used in the expenments are shown
in Table 1.

4 Results

In the experiments, the time-series EEG signals are
measured from five subjects. The second layer of the

'LLGMN consists of six units (three for each class)

corresponding to the total component number of the
GMM, and the second layer of the NF consists of eight
units.
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Figure 4: An example of the classification result

Table 2: Classification results of the eye states
Subject __JA(male) [B (make) [Clmake) [Dimele) [Eieonale)

Witbout NF | Clasaificationeate{%) 911 833 g_.s* s13] - 932
Stendarddeviation(%} 04 o8] 14 1.1 06
Proposed uet | Cussificationrasie(%) | 94.5]  904] 938 8971 934

——Suntsddeviation®)) __ 03] o8] L1 __03) o1

The NF is trained using N = 168 data according to
the pseudo-random series for 180 seconds (n; = 0.001).
Then the ratio of the correct classification to 422 data,
- which are not used in the learning, is computed. -

4.1 EEG Classification of the Eye States

.Figure 4 shows the classification result of the pro-
posed network (subject A), where the input feature
vector is two dimensional data for two classes shown

in Table 1 (d = 2,H = 6,K = 2). The LLGMN is -

trained using N = 100 data (50 for each class). In the
-figure, the timing of switching eye states, the EEG sig-
nals (z;, z3), the output of the LLGMN (Y}, Y2), the
output of the NF ((9v;, 4)u,) and the classification re-
sults are shown. It can be seen that the NF makes the
output of the LLGMN considerably smooth. In this
case, the LLGMN achieves considerably high perfor-
mance with 95.3 percent of the classification rate. A
few misclassified data are observed immediately after
switching eye states.

Table 2 shows classification results for five subjects.
The mean values and the standard deviations of the
classification rate for 30 kinds of initial weights, which
are randomly chosen, are shown. As can be inspected,

(b) Proposed network

d : Number of the input vector N : Number of the training data

Figure 5: Effect of the training data on classification
results of the eye states

the proposed network achieves considerably high clas-
sification performance for all the subjects.

Next, we examine the changes of the classification
rates with the number of training data N and the di-
mension of the input vector d taken from Table 1. For
each input vector, the number of training data N are
changed from 10 to 100. The networks. are trained
for fifty sets of the training data (N = 10,20,.--,100,
d =2,3,---,6). Then the ratio of the correct classifi-
cation to 422 data, which are not used in learning, is
computed.

Figures 5 show the mean values and the standard
deviations of the classification rate for ten kinds of
the initial weights. Although both the networks can
achieve high classification rate for large number of
training data, the difference becomes clear as the num-
ber of the training data decreases. The proposed net-
work keeps the classification rate high even for small
sample size of the training data. ‘

4.2 EEG Classification of the Artificial
Photic Stimulation

Next, the pattern classification experiments are car-
ried out under the artificial photic stimulation. The
experimental results for five subjects are shown in Ta-
ble 3. The dimensions of the input vector d = 2,6
and the number of the training data N = 50,100 are
used in the learning procedure. The ratio of the cor-
rect classification to 422 data, which are not used in
learning: is computed. Compared to the classification
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Table 3: Classification results of the artificial photic
stimulation

Number of the leaming data N=150 N=100
Dimension of the input vector d=1| d=5| d=1| d=§
subject A Classification rate(%) | 83.2] 84.5| 84.4] BS54

(male) .| Standarddevistion(®) | 1.51 0.6/ 1.4 1.1
subject B | Classificationrste(®%) | 89.8] 92.3! 923! 93.1
(male) Standard deviation(%) | 09! 0.4! 1.11 07
subjectC | Classificationrate(®) | 63.8) 66.8| 79.5! 81.1
{male) Standard deviation(%) 1.0f 521 0.5 28
subjectD | Classificationrate(%) | 78.0| 78.9] 80.2} 80.3
(male) ‘Standard devistion(®) | 2.41 1,71 0.2 0.1
subjectE Classificationrate(%) | 75.61 77.3] 824! 83.1
(male) Standard devistion(®) | 1.2] 0.8 0.9] 06

result of the eye states, the classification rates of the
artificial photic stimulation decrease. The classifica-
tion rates tend to improve with increase of the number
of training data from N = 50 to N = 100 and the di-
mension of the input vector from d = 2to d = 6. Also,
the standard deviations of the classification rates tend
to decrease.

Finally, we examine the changes of the classification
rates depending on the number of the fraining data
N and the dimension of the input vector d. Figure 6
shows the classification result (subject A), where effect

~of the NF on classification results is clear. Thus, with
the use of NF we can improve the classification ability
of the network significantly.

5 Conclusion

The present paper proposes a new neural network
structure that combines the LLGMN and the NF.
To examine the classification ability of the proposed
network, EEG pattern classification experiments have
been performed. The proposed network realized con-
siderably high classification ability for the time-series
EEG signals.

Our future research will be directed to develop a
technique to incorporate dynamic statistical model
into the neural network. This work was supported in
part by Tateisi Science and Technology Foundation.
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