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Abstract

A dynamic active antenna sensor for locating a con-
tact point is considered in this paper. In its simpliest
realization the sensor can be implemented in the form
of a flezible beam rotating én plane. The main feature
of the sensor is the use of the frequency-contact point
curve which, for some regions, may be a multi-valued
function. One way of “improving” the curve could be
concerned with the non-uniform mass and stiffness dis-
tribution of the beam, which would lead to o rather
complicated sensor design. Another way to remedy the
situgtion is to change the sensing strategy by adding
o proper control action at the joint of the beam. To
study the sensor’s response to the control, a dynamic
model of the beam in contact with the external environ-
ment is developed. Analysis of the frequency eguation
shows how a simple proportional control law changes
the sensing curve. It is found that in some limiting, but
practically attainable cases the sensing curve becomes a
single-valued function. Thus, the solution proposed can
significantly simplify the identification procedure.

1 Introduction

Invention of many sensors being currently used in
robotics and mechatronics was inspired by existance
of “similar” devices in living creatures. Observing be-
havoir of insects, which in a sense can be thought of
as prototypes of mobile robots, one cannot help noting
the skill they use their antennae to avoid hitting objects
particulary close to them. An interesting observation
is that insects are always moving their flexible anten-
nae actively when they are crawling, runnung, and even
staying still,

This observation led Kaneko [1] to developing a new
class of sensors for detecting a contact point. The main
features of this type of sensors, named Active Antenna,
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are flexibility of the probing tool and ability to move
it actively. These features as well as working principles
for the Active Antenna were discussed in [2]. In its
simpliest realization the Active Antenna can be repre-
sented by an actuator rotating a straight flexible beam
in a plane. The role of the curvature of the beam shape
in the sensing process was analyzed in [2]. Extension of
the concept to the spatial 3D case has been done in [3].
A survey of related to the Active Antenna contact sen-
sors can be found in [2], where they are classified from
the viewpoint of active and passive sensing.

Initially, the concept of the Active Antenna has been
presented for the static conditions of sensing. In this
case a small motion is imparted at the joint and the
information about the contact point can be extracted
from a torque sensor mounted at the antenna’s base.
Later on, the concept of active sensing has been ex-
tended to the dynamic formulation [4,5]. In the dy-
namic case motions of the beam are separated into the
searching phase and the detecting phase. The latter
is further separated into the contact phase and non-
contact phase. The moment the beam hits an object
the reaction torque is changing impulsively, and there-
fore the corresponding contact angle can be detected.
The actuator is stopped right after the moment the con-
tact has ben detected. Free oscillations of the beam, re-
sulting from the contact (impact), are excited and mea-
sured through the torque sensor. As has been proved
in [6], the coordinate of the contact point is defined
uniquely from a given spectrum of the natural frequen-
cies of the beam in the contact phase. '

Generally, it is not desirable to alternate the con-
tact and non-contact phases during the sensing pro-
cess. In other words, it is necessary to prevent the
antenna from bouncing and repeating collisions, which
is possible only with relatively fast identification of the
contact point. Thus, the dynamics of the contact phase
imposes severe restrictions on the sensing time, limiting



it in a rough approximation to half a period of the fun-
damental oscillation. Unfortunately, for the uniform
beam the sensing curve—the natural frequency versus
the contact point—is not a single-valued function of
the frequency [4,5]. Therefore, the higher order fre-
quencies must be brought into the analysis, which of
course complicates the identification procedure.

To exclude the multivalence region from the sens-
ing curve, one can try to change the mass and the
stiffness distribution for the beam. One possible so-
lution is to attach a concentrated mass to the tip of
the beam [4]. Increasing the mass reduces the mul-
tivalence range and, in the limiting case, shifts it to
the right end of the curve. Designing the beam with a
variable cross-section with linear tapering leads to the
same effect [6]. Both these design solutions are hardly
attractive from the viewpoint of practical applicabil-
ity. In the first case, the gravity effects may complicate
functioning of the antenna. Moreover, for relatively
high values of the mass the physical picture of the im-
. pact phenomena may be changed if the contact is made
at the tip point. In the second case the cross-section
has unusual form, widening from the base to the end
of beam.

Another, radically different way to remedy the situ-
ation is to change the sensing strategy itself. The orig-
inal formulation of the sensing strategy has one disad-
vantage. Indeed, by fixing the actuator in the moment

of contact we impose an additional constraint, which

makes the system stiffer. Relaxing the constraint and
letting the joint of the beam move in accordance with a
- control law during the sensing process may increase the

fundamental period of oscillations and ease the identi-
fication procedure. :

Analysis of the sensing curve is based upon a suffi-
ciently accurate mathematical model of the beam. In
the research community there has been a great deal of
interest in the modeling and control of single-link flex-
ible arms {7]. In spite of the fact that the literature on
the topic is voluminous, very few publications covered
dynamics and force control of the beam in contact with
the environment. Most relevant to our problem .are
works [8,9], where the eigenfunction expansion was con-
sidered for the tip contact condition. Impact analysis
was conducted in [10], where oscillations were excited
by hitting a concentrated mass attached to the tip of
the beam. Thus, the models for a middle-point-contact
have not been given considerable attention in literature.
Finally, an important difference between our research
problem and conventional control probléms should be
clarified. The difference is in regarding vibration—we
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are not interested in damping it out, we use it as an
information source.

This paper is organized as follows. Firstly, in Sec-
tion 2, the dynamic model of the sensor is presented.
Next, in Section ??, a solution for the dynamic equa-
tionsis obtained. After that, in Section 3, an analysis of
the frequency equation is undertaken. Here, it is shown
how the sensing curve can became a single-valued func-
tion of the fundamental frequency, which essentially
simplifies the identification procesure. Some practical
recommendations and theoretical research problems re-
sulting from our approach are discussed in Section 4.
Finally, conclusions are drawn in Section 5.

2 Dynamic Model of the Sensor

The sensor is modeled as a flexible beam having a
point-contact with environment, as shown in Fig. 1. A
rotating frame OX,Y} is attached to the bub. The
beam is clamped at the hub, and its elastic transversal
displacements v(z,t) are measured with respect to the
beam’s axis OY}. Let J;, be the inertia moment of the
hub, g, the rotation angle, and 13 the applied torque.
The flexible link is assumed to be uniform, of length
L, with constant Young’s modulus E, area moment of
inertia I about the bending axis, and mass per unit
length p. A payload of mass my, is attached to the tip
of the beam.

Figure 1: Flexible beam in contact phase.

The following common assumptions are made in the
mathematical model: the beam rotates in a horizontal
plane so that gravitational effects are not included; the
angular velocity of the beam is much less than the low-
est natural frequency of the beam; rotatory inertia and



shear deformation are neglected; the radius of joint and
payload are neglected; friction in the joint and internal
friction of the beam are neglected,

The coordinates of an arbitrary point of the beam in
the inertial reference frame OXY are defined as follows

X(z,t) = =zcosgy—v(z,t)sings, (1)
Y(z,t) = zsings+ v(z,t)cosgs. (2)
Let g}, be the contact angle, and [ € [0, L] be the con-

tact distance. As to the environment formalization, we
‘assume the following. The object does not move during

the sensing, and sliding of the contacting bodies rela- -

tive to one another is negligible for the duration of the
impact. Friction at the contact point is negligible so
that the longitudinal contact forces are not included in
the model. Under these assumptions, the virtual dis-
placement at the contact point, expressed in the axes
0OXpYn, must be zero. Therefore, the constraint im-
posed onto the beam’s motion can be formalized as

S(l,t) = lgn + v{l,t) = const =lg;, 3)

where S(I,t) has the meaning of length of the contact
arc.

The kinetic energy T of the system is the sum of
kinetic energies of the hub T}, the beam T}, and the
payload Ty, where

L
7 = [ X0+ V(@ ), @
1 > . 1,.
TP = ;m?(xz(Lst) +Y2(L: t)): Tb = ;Jhﬁf' (5)

Here and throughout the paper, dots are used to de-
note time differentiation, and primes to denote partial
differentiation with respect to . The potential energy,
accounting for the distributed elasticity, and the virtual
work of the non-conservative forces are given by

L

p =1 / EI(W"(z, ) dz, (6)
2/

SW = bgnma + (Su(l,t) + logn) Sy, (7)

where f, is the contact force between the beam and
the object. This force can be interpreted as a La-
grange multiplier (normal reaction) associated with the
constraint (3). The Hamilton’s Extended Principle,

L2(0T — 6P + 6W)dt = 0, is used to derive the dy-
namics equations. This Principle leads to the following
equation for the virtual displacements

L
Sgn{mn +1fy ~ JGn ~ .L ui(z, t)zdz — mpLH(L, 1)}

L
—bv(z, ) / (BIv™ (z, 1) + pb(z,t) + pinz)dz
[+]

+{EIV" (z, t)év(z, t) — EIv"(z, )60 (z,t)}5
—8u(L, t){mp(D(L, )+ Lis)} +év(l, 1) f, = 0, (B)

where J = Jy + Jp + Jp, Sy = pL?/3, and J, =
mpL?. The geometric boundary conditions are de-
fined as v(0,t) = 0 and v'(0,¢) = 0. Motion equations
and the dynamic boundary conditions follow from (8).
They, however, explicitely depend on the contact force
Jy- To exclude the contact force and simplify the anal-
ysis, the following transformation of variables is intro-
duced

00 =an(®) ~ai, ulmt) =v(z,t) +20().  (9)

Upon transforming the virtual work equation (8) and
the constraint equation (3) to the new variables, after
simplifications one obtainsg the following linear equa-
tions of motion and boundary conditions:

Jib - EIu"(0,8) = 1, (10)
EIu"(z,t) + pi(z,t) =0, {11)
© u(0,t) =0,u'(0,¢) = 8,u"(L,).=0, (12) -
u(l,t) =0, EIu"(L,t) = myi(L,¢). (13)

The choice of the control action 75, defines a sensing
strategy. One possible action is -to impose an addi-
tional constraint @ = 0. This corresponds to a passive
sensing strategy. Another possible strategy, which can
be called active, is to set 7, = 0 for the time of sens-
ing action. Limiting ourselves to the linear models and

~ simple design solutions, we choose

Th = —k8, (14)

where k is the static feedback gain.. The control (14)
can be interpreted as an artificial active compliance
acting at the joint.

3 Analysis of the Frequency.
Equation (

Equations (10-13) with control (14) can be solved
using the classical method of separation of variables.
For the n-th vibration mode, the shape functions ¢ (x)
and the natural frequencies w, are defined from the
following eigenvalue problem:

9" (z) - Mop(z) =0, (15)

1683



»(0) =0, ‘Pg) =0, ‘P"(L) =0, (16)

(Ine?® — k)P (0) + EIL"(0) =0,  (17)

EI¢" (L) + myw?p(L) =0, (18)

where \* = pw?/EI. Let z = lf/L be the normalized

. coordinate of the contact point, and = AL.

Written for thé dimensionless variable 3, the fre-

quency equation for the system under consideration can
be represented in the following form

Jh o kL _
(326 - 55) v - o) =0, (19

where 9.(8) and ¥,(8) are the left-hand sides of the
frequency equations corresponding, respectively, to the
“clamped-free” case and to the “pinned-free” case with
Ji = 0 and k = 0. In a sense, they are basis functions
for the frequency analysis. These basis functions are
derived as :

Vel) = VeolB)+ 2Bem(B)  (20)
G(B) = ¥polB)+ 200pm(B), (1)

with the explicit analytical representation given by

Yeo(8) = 3 {cosh B(1—2)[sin f cosh B—sin A(1~2)]
+ cos A(1 — z)[sinh B(1 — z) —~ sinh B cos 8z}
+ cosh 8z sin Bz — cos Sz sinh 8z}, 7 . (22)

dem(B) = %{Zﬁnﬂsinhﬂ — 4sin B(1 — 2)sinh A(1 - 2)
+ cos Bcosh A(1 — 22) — cosh B cos B(1 — 22)
+ sin #sinh B(1 — 22) + sinh §sin B(1 - 22)}, (23)

Ypo(8) = 3{[c0s B(1 ~ 2) + cosh B(1 - 2)[fsin -
sinh Bz + sinh Bsin §z] — [sin B(1 ~ 2) + ,
sinh 8(1 — 2)}{cos B sinh Bz + cosh Fsin 8z]}, (24)

Yem(B) = %{sin Bsinh Bzsinh B(1 — 2)
~sin B(1 — z) sin Bz sinh B}. (25)

It is to be noted that 9.(0) = 0 and v, (0) = 0. Also,
for z = 0 9:(8) = 0,4,(8) = 0. In this case the phys-
ical system tends to the classical “clamped-free” case
with no intermediate support, and the frequency equa-
tion transforms to 1+ cosh 8 cos 8+ Smy(cos Bsinh 8 —
sin Bcosh B)/my = 0. If the contact point is z = 1
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Figure 2: Sensing curve.

the frequency equation does not depend on m,, with
the basis functions becoming ¥.(8) = (sinScosh§ —
cos Asinh 8)/2 and ¢, (8) = sin Bsinh 8.

Let us define the following three parameters

Ry =Ji/Js, Ry =kL/EI, Ry =my/ms,  (26)

where R is the ratio of the moment inertia of the hub
to that of the beam, R, is the ratio of the torsional
stiffness to the bending stiffness of the beam, EI/L,
and R,, is the ratio of the mass of the payload to that

. of the beam, my = uL. As can be seen, the frequency

analysis is fully defined in terms of these three ratios.
For instance, the basis functions ¥.(8) and ¥/;(8) result
from the limiting cases of Ry - coVV R, — o0 and

To study properties of the sensing curve for the lim-
iting cases, a set of simulations is conducted. Figure 2
shows two first frequencies of the limiting models as
functions of contact point z, with mass ratio R, chang-
ing from 0 to 100. As can be seen, the region of dou-
blevalence of 5, is larger for the pinned model. To
identify the contact point uniquely it is necessary to
use an addtitional information coming from either the
normalized amplitudes or the higher order frequencies.

Now, let us examine the case of Ry # 0 and R, =
0,Rm = 0. Figure 3 shows behavior of the sensing
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Figure 3: Sensing curve.

curve for the inertia ratio Ry changing from 0 to 3.
As can be seen, taking Ry into consideration leads to
appearance of yet another natural frequency, and this
frequency becomes the fundamental one. The behav-
ior of this frequency is quite different from that of the
system with Ry = 0. One attractive feature is that
this frequency is significantly lower than that of the
models for the “clamped-free” and the “pinned-free”
cases. And this is to the advantage of the identifi-
cation procedure, since the fundamental period is in-
creasing. Figure 4 shows the change of the time ratio
Ry = T/T.. Another important feature is that that
with increasing Ry the interval of the doublevalence is
becoming shorter and is shifting to the beginning of the
curvature, Thus, with relatively high values of R; we
can shift the doublevalence region to the non-working
range of the sensor*. Note, however, that with increas-
ing Ry the fundamental frequency tends to zero as the
ridid-body mode becoming dominant. To prevent this
situation and keep the fundamental frequency on a cer-

tain level, the stiffness ratio R, must be mcreased as .

well.

To better understand the role of R,, let us finally ex-
amine the limiting case of a massless beam, i.e., when
R —+ 00. To this end, we rewrite the frequency equa-

tion as ¢ (ﬁ)
(3.&’" - EI) 0’ @7

and note that g = B4EI/L*w?. Taking into account
that pand 8 have different rates of convergence to zero,
it is easily derived from (27) that

LB )
O F4eal) + aVm(B)”

*Normally, in technical realization, some range at the begin-
ning of the beam is considered as non-working,

L
V3 (Jhe® — k) =

Figure 4: Ratio of fundamental peﬁods‘

where the dimensionless variable a = w?J,L/El. Ex-
pressing the left-hand side of (28) through o and un-
covering indeterminacy of the limit in the right-hand
side of (28), we obtain the frequency equation

dn, KL _ 12{3 - a(1 — 2)%}
Jo  EI ™ z{12-4a+ az(3 - 2)?}

(29)

in the form similar to (27). This square equation
defines two different frequencies a. In the finite-
dimensional (concentrated) model they corresponds to
the two generalized coordinates: ¢'(0,t) = &(t) and
v(L,t). In the limiting case of J, = 0 we obtain

. 12EI 3EI + ki

=IC-1 wErr Ry %0
For the other limiting case, when J, =0, we have
SEI+ ki :
2
w® = T | {31)

As we can see, in this case the sensing curve is sim-
ple hyperbola giving a unique solut.xon for the contact

point.

4 Discussion

Here in this section, we want to specify and briefly
discuss some theoretical and practical problems, related
to.and resulting from our dynamic model of the sensor
under consideration.

First of all we would like to draw a parallel between
the static and dynamic cases of the active sensing. For
the simplicity, we consider the limiting case of a mass-
less beam with k = 0. The coordinate of the contact
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point is defined as
A8
| I=3BIg (32)
for the static case [1], and
I =3El—— J " (33)

for the dynamic case. As can be seen, in both the
cases it is proportional to the impedance, with the same
coefficient of proportionality. Thus, the theory of active
sensing is extended from the static case to the dynamic
case most logically if we allow the joint of the beam to
move during the sensing process.

Next important remark is about practical realiza-

tion. Of course, it is a big advantage that with the
active compliant control law we can obtain, within the
working range of the gensor, the single-valued sensing
curve. The price we have to pay for that is stricter
requirements to the driving system, especially with re-
spect to friction. If the friction cannot be reduced to a
low level and the driving system cannot be considered
as perfect, the passive sensing strategy would be more
appropriate.

Finally, we would like to make a comment on the
future research. In our work simple contact constraints
were assumed. We did not take into account possible
sliding between the object and the beam and ignored
the longitudinal force created by friction. It will be of
interest to test how these factors influence the sensing
curve. For this purpose our mathematical model must
be modified, and in this connection the formalizm of
contact and grasp developed in [11] can be useful.

5 Conclusions

Theoretical study of a dynamic active antenna sen-
sor for locating a contact point has been undertaken in
this paper. The study was motivated by the necessity
to “improve” the frequency-contact point sensing curve
by removing its multivalence region or shifting it to a
non-working range. Instead of designing a special mass
and stifiness distribution for the antenna, which may
or may not lead to an acceptable solution, we have
proposed to modify the sensing strategy itself. This
is done by means of simple control actions during the
sensing process. To investigate the problem at hand,
the dynamic model of a flexible beam in contact with
environment has been developed, and the correspond-
ing frequency equation has been analyzed. It has been

shown that the sensing curve can be a single valued
function in the working range of the sensor. The solu-
tion found relaxes severe time restrictions for the mea-~
surement, simplifies the identification procedure, and
reduces the number of sensor units mounted on the an-
tenna.
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