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Abstract

The present paper proposes an impedance control method
using force redundancy based on the Hierarchical Impedance
Control (HIC) framework and the concept of virtual arms.
The proposed method can control not only end-effector
impedance but also regulate the impedance of multiple
points on the links of the manipulator. The desired end-
effector impedance is always realized under the proposed
method, since controlling the end-effector impedance is
considered as the highest priorify task and regulating the
multiple points impedance as the sub task.

1. Introduction

Research activities focused on the resolution of
redundancy have been increased, including the motion and
force redundancy. As regards the force redundancy, Khatib
pioneered the use of the null space on the force/torque
transformation to control the internal joint motion of
redundant manipulators {1]. Kang and Freeman [2] derived
the null space damping method for several performance
criteria. ‘

On the other hand, impedance control [3], [4] is one of
the most effective method that has been suggested for
development of the compliant motion. Up to the present,
however, a few researches have been reported about using
motion redundancy in terms of impedance control such as [5]
and [6]. Also, [7] proposed the Dynamic Direct Compliance
Control using the motion redundancy to obtain an
independent joint control torque for realizing the desired end-
effector impedance.

Recently, Tsuji and Jazidie [8] have been proposed the
Hierarchical Impedance Control (HIC) for utilizing force
redundancy. It can control not only end-effector impedance
using one of the conventional impedance control methods
but also additional arm impedance such as joint impedance.
The HIC scheme has been introduced by incorporating an
additional controlier to the end-effector impedance controller
in a parallel way. The additional controller is designed in
such a way that it has no effect to the dynamic bebavior of
the end-effector motion.

In the present paper, the HIC framework is applied to
develop a method that can control the impedance of multiple
points on the links of the manipulator. Previously, {9] and

[10] proposed a method called Muiti-Point Compliance
Control (MPCC) which is able to regulate the compliance
of several points on the manipulator’s links as well as the
end-effector compliance. Here, the MPCC is extended to the
dynamical case and a new control method called the Mulri-
Point Impedance Control (MPIC) is proposed. Under
the proposed method, the desired end-effector impedance can
always be realized, since controlling the end-effector
impedance is considered as the highest priority task, and the
regulating the multiple points impedance as the sub task.

2 Hierarchical impedance control

2.1 HIC scheme

The basic idea and the sufficient condition of the HIC
scheme [8] are described in this section. Firstly, the motion
equation of an m-joint manipulator can be expressed, in
general, as follows.

MO8 +1(6,8) =7 +JTFF | m
where F&% e R/ is the external force exerted on the end-
effector; € R™ is the joint angle vector; M(6) € R™*™
is the non-singular inertia matrix (hereafter denoted by M);
7(6,8) € R™ is the nonlinear term representing the joint
torque vector due to the centrifugal, Coriolis, gravity and
friction forces; T € R™ is the joint control torque vector;
J(8) € R*™ is the end-effector Jacobian matrix (hereafter
denoted by J); and / is the dimension of the task space.

Now, the target impedance of the end-effector is

expressed by
MdX +BdX +K X =F |

where M, B,, K, € R' %/ are the desired inertia, viscosity
and stiffness matrices of the end-effector, respectively, and
X =X -X; € R! is the deviation vector of the end-
effector position from the desired trajectory X, .

In the HIC scheme, the control law is given by

@

@

T = Toffector + Teomp + Tadd +

where 7,g,c.,r € R™ is the joint torque vector needed to
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produce the desired end-effector impedance; 7 omp € R™ is
the joint torque vector for the nonlinear compensation; and
Taqq € R is the joint torque vector for the given sub task.
For the term T gpcror € R™ , the impedance control law
without calculation of inverse Jacobxan matrix [4] is

adopted:

Tefector =J [A{Xd M;YBdX +K dX)~ Je} -

(I-AM;1YFE] @

where A =(UM~UT~1e R, Also, the nonlinear
compensation in the joint space is used for the simplicity:

Teomp=H(6,6) . )

It is assumed that %(8,8) =h(6,6) and manipulator's

configuration is not in a singular posture. Moreover, if the

additional joint control torque,7 5y, satisfies the following

condition [8]

7%, =0, ©

where J = M~ 1JTA € R™*!, then 7,4, dynamically has no

effect to end-effector motion of the manipulator, and the end-

effector impedance remains equal to the target impedance
given in (2).

2.2 Optimal additional controller

Kang and Freeman [2] derived three kinds of the general
solution of (6) corresponding to the three local joint torque
optimization schemes: joint torque minimization, natural
joint motion and joint acceleration minimization. Note that
the null space derived by joint torque minimization and
natural joint motion criteria are the same as the ones used in
Tsuji and Jazidie [8] and Khatib [1], respectively.

In the present paper, using the natural joint motion
criterion, we will derive the additional optimal controller,
T aa» COTrEsponding to the desired joint torque, 7, for a
given sub task. Firstly, the null space derived by the natural
joint motion criterion is given by

Taaa=T-ITT Dz, 0
where z € R™ is an arbitrary vector. The joint torque, 7,4
in (7) always satisfies the sufficient condition (6), and now
the problem becomes how to find the arbirary vector z in
(7) to minimize the following cost function G(7 ,4,):

(Tt = Ty = Todd M~ N Cogy=Toad - ®)

The cost function (8) describes the inertia inverse weighted
driving force or the acceleration energy about the discrepency

between 7,4 and 7., [2]. By minimizing the cost function
(8), the additional joint torque, 7,4, would be close to the
desired one, 7, ;.. Using the least square method, we can find
the optimal solution (see appendix A) as given by

Toaa=U-JT DT, . ©)

The joint torque of (9) is the optimal one corresponding
to the cost function (8) and has no effect to the dynamic
behavior of the end-effector motion, since 7, always lies
in the null space of J 7. So, under the HIC, it is possible to
utilize arm redundancy through a suitable selection of the
additional controller, 7,4, in the sense that the manipulator
can perform a sub task while controlling the end-effector
impedance.

3 Virtual arm and its kinematics

We consider a redundant manipulator having m joints
shown in Fig.1. The virtual arm is defined as an arm which -
has its end-effector (hereafter, referred as a virtual end-point)
located on a joint or a link of the actual arm [9]. Here, ny
virtual arms are generally cousidered, comresponding to the
number of the virtual end-points which we want to regulate
their impedance.

wsk %%
coordinate 4
system o
m ‘:.. o d
virtual ead-point o o
coordinate system &
»
4 d
! i eee ! i

{a) actual arm (b) virtual arms

Fig.1 Actual arm and virtual arms

Let the virtual end-point position and velocity vectors of
the i-th virtual arm in the i-th virtual end-point coordinate
system be denoted as X,; € R’ and X,; € R’, respectively.
Let also the corresponding force vector be denoted as
F,; e R®’. For redundant manipulators, m is larger than /.,
The concatenated instantaneous forward kinematics for ali
virtual arms is given by

X, =76,
t=JTF, ,

1o
an

where X, = (X} Xy, - X117 € ®™ and J, =7, I,
I3 1T € R™*™ are the concatenated velocity vector
and the concatenated Jacobian matrix of the virtual end-
points, respectively. F,, = [FT « FT ]’r e K™ is the
concatenated force vector of all vumal eud~pomts Here,
J,; € RIX™ is the Jacobian matrix associated with the i-th
virtual arm. In the following section, we will derive the
desired additional joint control torque, 7, for controlling

the impedance of multiple points on the links of the
manipulator using the concept of the virtual arms,
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4 Multi-point impedance control

4.1 Multi-point impedance control law

When the manipulator interacts with the environment
not only through the actual end-effector but also through
other points on the links of the manipulator, the motion
equation of the manipulator can be written in the following
form:

MO8+ h6,0)=1+JTFF+JIFE | (12)
where F&% € R™ is the concatenated external force vector
exerted on the virtual end-points. The joint control torque is
given by ‘

7= T yguctor T comp* Taga— TN IS, 13)

including the cancellation torque, (J/)TJTFS®, for the
effects of the external forces exerted on the virtual end-points
to the actual end-effector motion.

Now, the target impedance for the multiple virtual end-
points is described as

MdX, + BdX, + KX, =F§¥

where My, By, Ky e R™*™ are, respectively, the
concatenated inertia, viscosity and stiffness of virtual end-
points. Here, dX,; = X,; — X% € R/ is the deviation vector
associated with the i-th virtual end-point from its desired
trajectory, X% € R,

In order to determine the desired joint torque,t,,, for
controlling the multiple points impedance, firstly, the
effects of 7, , to the actual end-effector impedance is
ignored, i.e., the null space transformation matrix reduces to
an identity matrix in (9), then 7,4, in (13) is equal to 7},
Based on the kinematic relationship between the virtual end-
point motion and the joint motion (10), we can find the
following joint torque for controlling the multiple points

impedance:

Tada=~ T M AR, + BAX, + KAXy ) = % gector+
TDTITFF ~ JTFe® + M(6)D ,

(14

13

Under the HIC framework, the coupling effects of 7, to
the actual end-effector impedance can be filtered out through

the null space transformation matrix using equation (9), and

the additional joint control torque T, is assured to be
always the optimal one corresponding to the cost function
(8). Substituting (15} into (9) we bave

Tog=~ =TI JT (M dR + B AX, + K dX,)

+(-JTT DM@ (16)
using the following property:
a-JJFHN =0, an

where u € R/ is an arbitrary vector. The block diagram of
the malti-point impedance control proposed in this paper is
shown in Fig.2.

X

Coordinate Transformation ke —-

X4
+

+

bl

Fig.2 Block diagram of the hierarchical control of multi-point impedance.
The method can control the virtual end-points impedance as well as
the end-effector impedance of the manipulator.

4.2 Validity of the MPIC

Figure 3 shows four kinematic conditions of a six-
joint planar manipulator (m=06; [=2) that can be categorized
depending on the number and the location of the virtual
end-point as follows [9]: i) the redundant case (Fig. 3(a)), ii)
the non-singular case (Fig. 3(b)), iii) the over-constrained
case (Fig. 3(c)) and iv) the singular case (Fig. 3(d)). Since
the MPIC is developed using the concept of virtual arms,
the above four cases are analyzed in this section.

@ virtual end-point

S8y

@) ®) © @
aredundant  anoam-singular an over-constrained asingular
case case case case

Fig.3 Four cases of the virtual arms

Let define J.=[JTJTTe R®+DXm a5 the
concatenated Jacobian matrix for all virtual arms and the
actual arm. The rank of J, reflects the four cases mentioned
above: J,. is of full row rank for the redundant case, of full
rank and square matrix for the non-singular case, of full

column rank for the over-constrained case, and not of fuil
rank for the singular case.

Now, applying the maulti-point impedance control law
derived in the previous section (see egs. (13), (4), (5) and
(16)) to the motion equation of the manipulator (12), we can
have the following equation:

U-JTIDITM AR, + BAX, + K AX,~ FE) =0 . (18)

It can be seen that the realization of the virtual end-point
impedance depends on the rank of the matrix (7 JT7 T,
When (I-JTT T is of full column rank, the target
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impedance of the virtual end-points (14) can be reali;ed of the circular trajectory. The target end-effector impedance
-exactly. Otherwise, the impedance of the virtual end-points  (2) js expressed in the polar coordinate system, where the
differs from the desired one. On the other hand, the target inertia, viscosity and stiffens matrices are given as M,
relationship between the rank of (/ -.IT?T)J}: and the rank ~ = diag. [13.5x10°3 (kgm2), 0.2 @)}, B, = diag. [1.25

of J,, is given by the following theorem.

(Nm/(rad/s)), 2 N/(m/s))}, and K, = diag. [32.25 (Nm/rad), 5§
(N/m)], respectively. Also the desired end-effector trajectory

Theorem 1: When the end-effector Jacobian matrix Jis of  (equilibrium trajectory) is given as the following:
full row rank matrix, then the matrix (7 — JTJ JT is of full

column rank if and only if the concatenated Jacobian matrix

J . is of full row rank.

Proof : See the appendix B. L

37,3 4.4 57,5
Y0 20t /:f—30m l:f+12:zt ltf
o |~ , (19)

r

Hence, it can be seen that in the redundant and non-  where r and the time duration fr are set t0 0.25 m and 2.0's,
singular cases (Fig. 3(a) and Fig. 3(b)), the desired multiple respectively. The desired velocity and acceleration of the end-
points impedance can be realized simultancously. On the effector are also obtained from (19) by differentiation.
other hand, in the over-constrained and singular cases, the Figure 5 and Fig.6 show simulation results performed
virtual end-point impedance does not agree with the desired under the conventional impedance control and the MPIC,
one while the end-effector impedance can be controlled respectively. The virtual end-point was located on the 3rd

exactly.

5 Simulation Experiments

joint (ny = 1. see Fig.4), and the desired virtual end-point
impedance matrices are given as M, = diag. [0, 0.2] (kg),
B, = diag. [0, 20] (N/(m/s)), K,, = diag. [0, 500] (N/m),
respect to the world coordinate system. The desired virtual

The effectiveness of the proposed method was evaluated  end-point trajectory is given as X5(1) = X,(0).
by computer simulations using a three-joint planar

_ manipulator (m=3; /=2). The MPIC was applied to the N Y © virtual end-point
manipulator following a circular trajectory shown in Fig.4. s {nitial posture
The link parameters of the manipulator are shown in Table
1.

y
02m | ETYT

world coordinate i r i \
system 2 : %

.....

"o

® virtual end-point -
8=[-0.175, -0.35, 0.175]T (rad)

Fig4 A three-joint planar manipulator following a circular trajectory

Fig.5 Stick pictures of the three-joint manipulator following a circular
trajectory under the conventional impedance control

y © virtual end-point
wsmmmme  initial and final postures

- ~-,

x b
TABLE [ 02m ; ;)
LiNK PARAMETERS OF THE THREE-JOINT PLANAR MANPULATOR D¢ —-,..f‘\/‘,‘._. ——
linki (i=1,2,3) \'.‘/ pe
length (m) 0.4 ["’ oo
mass (kg) 3.0 //
center of mass (m) 0.2 k '
moment of inertia (kimz) 0.32
Fig.6 Stick Pictures of the three-joint manipulator following a circular
trajectory under the multi-point impedance control.n%’he virtual
end-point was located on tKZ 3rd joint of the manipulator.
Two kinds of coordinate systems are chosen as follows: Under those impedance parameters and the desired

(i) the world coordinate system, X (x, y); and (ii) the polar trajectory, the virtual end-point moves almost freely in the
coordinate system, & (¢, r), with its origin at the center of direction of x axis and constrained tightly in the direction of
the circle where ¢ is the rotational angle and r is the radius ¥ axis. From these figures, it can be seen that both of the

manipultors can follow the circular trajectory finely. In term
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of the virtual end-point, however, the effectiveness of the
MPIC appear clearly. As expected, in Fig.6 the virtual end-
point moves along the x axis during the end-effector follows
the circular trajectory.

6 Conclusion

‘We have proposed the multi-point impedance control for
redundant manipulators based on the HIC framework. In this
method, controlling the end-effector impedance was
considered as the highest priority task and regulating the
multiple points impedance as the sub ‘task. Under the
proposed method, the desired end-effector impedance can
always be realized. It was shown that the method was able to
regulate the impedance of several points on manipulator's
links without any effect to the end-effector motion. The

validity of the MPIC was analyzed and shown by computer .

simulations.
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Appendix A
Substituting (7) into (8), we find
G@={Tgg— U~TTT N2y M2}y - - TT Tz} (A1)

It is well known that the necessary condition regarding
the optimal solution of the above problem is given by

dG(2)/oz=0 . (A2)

Substituting (A.1) into (A.2) and expanding it using the
properties: = JTTDNTM-1=M-17~JTTT) and Jim-1
=JIM~YTTT= M-17777 finally we have

A-JTNe=-JT N5, . (A3)
Then substituting (A.3) into (7), we can obtain
Toaa=U-TT DT, . (A4

Appendix B

Proof of Theorem 1: For the composite transformation
I-JTHIT, we bave [12]

f@-JT D + dim RUD ANC-TT ) =Ty , B.1)

where 7(-) and dim (- ) denote the rank of the matrix and
the dimension of the space, respectively. Also, R(-) and
N(-) stand for the range space and the null space of the
matrix, respectively.

Firstly, let's assume that the matrix (I~ JT7 DT is of
full column rank. This means that J,, is the full row rank

matrix, since the matrix (/—J T 1) is not of full rank:

((-JT D =107y . ®B2)
Using (B.1) and (B.2) we obtain
RUDANI-TTTTy =0} . (B8.3)
On the other hand, it can be shown that
NI~JTTD=RUT) . B4)
Substituting (B 4) into (B.3) we can find
RUDARUD) = (0}, ®5)

which implies that J, is the full row rank matrix,

Now, let's assume that J,. and J,, are the full row rank
matrices. Then, RUT) "nRUTD = (0}. As N(I-JTTDH=
RUT), this implies that (1= JTTTIT is of full column
rank. This completes the proof. |
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