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1. Introduction

Human motor skills depend, to a large extent, on two factors: (i) the intrinsic compliance of the
musculo-skeletal system and (i) its kinematic redundancy. The former factor allows a smooth
modulation of contact forces during manipulation as well as a partial compensation of disturbances
during trajectory formation. The latter is necessary for incorporating different task constraints
in the same motor plan. In particular, experimental investigations of human arm movements
[3] showed that the arm (even of a deafferented monkey, deprived of any kinesthetic/somesthetic
feedback) returned toward an intermediate position (between the initial and final one) when the
arm was temporarily displaced before the onset of the target. This suggests the hypothesis that
the central nervous system plans 2 movement in terms of 2 sequence of equilibrium points, or
virtual trajectory [5] but does not tell us anything about the central process which is responsible
for producing it, particularly in the case of a redundant system. The main idea of this paper is
that in complex robotic manipulators which, similarly to the human arms, are characterized by
mechanical compliance and kinematic redundancy, it is quite useful for the planner to establish
an analogy beween the real-time gradient-descent process determined by the mechanical potential
field and a similar process associated with the dynamics of a neural computational engine which
produces the virtual trajectories. In fact, the reaction of the arm to a contact/disturbance force
is a gradient-descent in the elastic potential field of the musculo-skeletal system and this does
not imply just a single motion pattern but a family of responses, indexed by the stiffness level of
the different muscle groups, thus allowing a run-time adaptation of the reactive-part of the plan.
Analogously, the run-time adaptation of the trajectory-formation part of a plan can be achieved
by a gradient-descent process in @ computational potential field modulated according to different
task constraints. In this paper, we show how artificial potential fields can be expressed by means
of a self-organized map [8], which also represents a forward model of the manipulator, and how
gradient-descent can be performed in real-time on this map.

2. Self-organized forward model of redundant manipulators

Redundant manipulators imply an ill-posed inverse kinematic problem, because the mapping from
sensory stimuli to motor variables is one-to-many, Although a direct inverse modelling approach
can solve the problem on the base of self-supervised learning with a suitable training set?, a better
solution. breaks down the learning process into two phases [6): (i) in the first phase, the self-
supervised strategy is used in order to learn the motor-to-sensory transformation {a forward model
of the rebot), which is always well defined, irrespectively of the degree of redundancy; (ii) in the
second phase, the inverse sensory-to-motor transformation (an inverse modefof the robot} is trained

Self-supervised learning is a strategy for learning the model of a system or its inverse and it consists of generating
pseudo-random input patterns, applying them to the system, measuring the response patterns and using the input-
outpat pairs as training set of the model: either a direct/forward model {capable to predict the response given the
stimulus) of an inverse/backward model (capahle Lo estimate the stimulus that would produce the observed response).
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by combining two criteria, one which aims at getting a global identity mapping? and another one
which attempts to minimize some additional cost index. In this way, it is possible to have inverse
models which are tuned according to specific task needs and are able to integrate different sensory
chaanels. In the implementation of this concept proposed by (6], the forward model as well as
the controller are multi-layer networks trained with the well-known technique of back-propagation.
This is simple and efficient but can only work in an off-line manner and thus does not allow run-
time task adaptation. The approach proposed here exploits the same forward-modelling concept
and two-phase adaptation method but attempts to introduce an on-line element: {i) the forward
model of the body is learned offline as a self-organized map, while (ii) the synthesis of the.inverse
sensory-motor transformation is performed at run-time exploiting computational features of the
self-organized forward model that allow a local computation of the gradient field. In this way, it is
possible to take into account task-dependent constraints that are not fixed but are indeed specified
on-line.

8. Off-line learning of the forward model

The forward model is defined by an input motor vector u, which is the set of joint angles, and an
output sensory vector B, which stores all the observables dependent upon p, as the coordinates
of the end-effector x,; in the workspace or visual features of the robot images from a stereo-pair
of cameras. We represent such a model # = §(p) by means of a self-organized cortical map [1]
which consists of a single layer or neural field F of M processing elements (PE’s): They operate
in parallel on a common input vector 4 € M C R¥ and their activation function is the normalized
Gaussian or softmaz function
Glls —~ BlD

55 Gl ~ 1) @
(the G(-)"s are Gaussian functions of equal variance and the norm is ;) which has been used in the
field of regression and classification {7, 4] and is a type of hyper radial basis function {10, 9). PE;’s
have limited receptive fields, centered around preferred vector prototypes ji;'s, where the activation
function peaks. The distribution of activities on the field for a given input pattern is also known
as coarse or population code of that pattern.

Learning is performed by means of self-supervised soft competitive learning:

Uip) =

Affi =m (I‘k -~ I:‘t) Uilp) (2)
AB; = my (Br — B:) Us(a)

which is based on a training set of self-generated pseudo-random patterns (g, fx 1k = 1,2,...) and
carries out a smooth distribution of prototype vectors on the neural field with optimal statistical
properties®. Moreover, the forward model is approximated by the following formula:

B=Bp=~ }_:EeU;(;x) )]

which was demonstrated [13] to be a minimum-variance estimator.

As an example, let us consider a simple planar arm with 2 degrees of freedom and let us
restrict the sensory part 8 only to the 2D position vector of the end-effector. While performing
2 simulation of this model with a cortical map of M = 200 processing elements, training was
carried out by generating 4000 pseudo-random postures, uniformly distributed in a restricted area
of the configuration space. Such a training set was presented 10 times to the network, reducing
the learning rates {n; and 7, of Equations 2} from 0.3 to 0.05 and the variance 7,7 of the softmax

3The cascade of the inverse model + forward model should be able to generate » motor command, in response to
a given sensory stimulus, in such a way that the predicted sensory consequences of the command can reproduce, as
closely as possible, the same stimulus.

3The learning rule can be derived hy minimizing the cross-entropy between the probahility density function of g
and its approximation by means of a Gaussian mixture, with the Gaussian centers in ji;'s [2}.



258

Figure 1: Left: Trained cortical map of a 2 dof arm. Right: Distribution of error vectors on the
workspace.

function from 0.2 to 0.004. Figure 1(left) shows the trained cortical map, where eich PE is
represented by means of a circle containing a small picture of the arm in the learned configuration
(jis, B:). For the trained map, we also tested the accuracy of réconstructing § by means of (3) as
follows: (i) an arm configuration s with the corresponding end-effector position f# is chosen, (i) the
population code is computed, (iii) the reconstruction function (3) is applied, yielding an estimate
B, and (iv) the error vector ¢ = 8 ~ f is computed, that is the displacement between the ofiginal
and the estimated §. Figure 1(right) shows the distribution of these error vectors over the whale
workspace for a map of 200 PE’s.

4. Run-time gradient descent

A potential field £ = £{u), as any smooth function of 4, can be represented by means of a distributed
representation which uses the same population code and the same interpolation mechanism of the

forward model:
e{p) ~ Z EUilp) @

where the &i's are samples of the potential field which are assigned to each processing element in
relation to its preferred sensory-motor pattern (ji;, 5;).
The gradient-descent strategy requires to integrate the equation

i = ~7Ve(p) (5)
and this can be implemented in the cortical map by using the following resuit:
A= Z(# - EEU{p) (6)

which can be derived by writing the equation for the gradient vector Ve(u) = ¥; £30U;(p)/0p and
then taking into account the structure of the softmax function (with variance o2):

algiu} - _%(zj: B5U; — @) Udp) ~ -;;15(}‘ — #) Udp) @

The block diagram of figure 2 summarizes the simple circnitry which carries out the Jocal compu-
tations outlined above, particularly as regards equations (3) and (6) and allows the cortical map
to carry out gradient-descent. It can work in parallel and can support real-time provided that
gradient-descent is allowed to operate near equilibrinm. This is a key computational constraint
which can be satisfied by a strategy of local-incremental gradient-descent, i.e. hy a time-varying
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Figure 2: Block diagram of the cortical map gradient-descent network. The neurons in the top
bank have a Gaussian activation, in the middle bank perform lateral gating inhibition, and in the
bottom bank are simply multiplicative. The triangles are 2 bank of integrators.
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Figure 3: Three time frames of the target-distance gradient field snapped when the virtual target
is at the initial, intermediate, and final position.

- potential field which varies in such 2 way that its minimum stays close to the current position.
1t is important not only for implementing the real-time constraint but also for avoiding a typical
pathology of gradient-descent mechanisms, i.e. getting trapped into local minima. In particu-
Jar, this can be obtained by a target generation mechanism that smoothly shifts a virtual target
X, = X,(t) from the initial hand position xg to the real target position xT and a target potential
function which simply measures the Euclidean distance between the end-effector and virtual-target
positions: €% = ', ¢) = 1] x,(1) - xes(u) |>. A model of the target generation mechanism
is discussed elsewhere in the book [12]. Figure 3 shows the evolution over time of the field for a
simple targeting movement. :

5. Integration of different task constraints

The use of potential fields is a powerful technique for representing task constraints of different nature
and defined in different coordinate frames. We previously considered a field for the representation
of targets which operates as an atiractor on the cortical representation of the end-effector. This
is effectively a kinematic inversion mechanism and it operates equally well with redundant and
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pon-redundant systems, implicitly computing an inverse matrix: the inverse Jacobian of the direct
kinematic function, for non-redundant systems, or the Moore-Penrose pseudo-inverse matrix, for
redundant systems. One of the nice features of performing the inversion via gradient-descent in a
cortical map is its computational robustness, even in the vicinity of kinematic singularities, such as
the boundary of the workspace, which tend to make unstable conventional inversion methods. The
robustness comes from two elements: (i) the nature of the cortical map organization and training
limits the domain of the generable motor patterns, whichever is the synergy formation mechanism,
to a smooth area covering the set of training patterns; (ii) the gradient-descent mechanism implies
that the flow of motor patterns is, in any case, a smooth path in the cortical map. For example, if
the target xr is outside the workspace, then the generated virtual trajectory hits the boundary of
" the workspace and then smoothly slides on it until it réaches the point closest to the target.

In fact, potential fields are general purpose tools for the specification of tasks, namely for rep-
resenting both the attraction to a desirable state and the repulsion from undesirable or dangerous
states. For example, a task component which aims at staying away from a dangerous joint confign-
ration j can be represented by means of a repulsive field of the type €™ = ¢7P(g) = g(|| p— i |I*),
where g(.) is a suitable monotonically decreasing function.

Attractive or repulsive fields can be computed from measures performed in different coordinate
frames and the crucial point is that the fields can be superimposed on the same cortical map provid-
ed that the forward kinematic model embedded in the map allows to perform such measurements.
The additivity of the task-related fields is the fundamental concept in our model for the integra-
tion of different task constraints as well as for the composition of complex tasks that attempt to
reach several objectives at the same time, exploiting kinematic redundancy. An example is the
task of keeping the end-effector as parallel as possible to its initial orientation while it is follow-.
ing an assigned path. This can be solved by defining, in addition to the farget-potential above,
a parallclism-petentialt ¢p¢7 = ¢7or{(y) = 11| f(z) —~ flu(to)) I}, and by carrying out 2 gradient-
descent in the combined field: &

€ = &(p) = kr£'' (1) + kae™(p) ®

where k, and ky weight the relative contributions of the two fields. This problem was simulated
in relation with the cortical map of a 3 degree-of-freedom planar arm {map size: 900 PE’s) and
then we performed two experiments of reaching: in the first one, only the target reaching task
was specified and the potential function & contained the pure target component, computed in the
end-effector space; in the second experiment, the initial configuration as well as the final target
were the same, but we added the parallelism-potential with a small relative weight (0.1). Figure 4
{left) shows a simulation run of the first experiment: the end-effector follows the planned straight
trajectory, smoothly changing its absolute orientation. Figure 4 (right) shows the simulation of
the second experiment. As is apparent, the trajectory of the end-effector is maintained and its
orientation is significantly more stable than in the previous case. A further example is given by
obstacle avoidance. Let us suppose that while tracking a virtual target in a cluttered environment
a robot might hit an obstacle unless it exploits its redundant degrees of freedom. In this case there
should be a repulsive obstacle-potential e%* = £%#(11) in addition to the attractive target-potential.

In the presentation above we assumed that the samples of the potential functions &'s are
somehow "downloaded” on the PE’s of the cortical map. The discussion of how this can be done
is outside the scope of this paper. A possible model, which is based on a further layer of maps, is
discussed in {11}

*The function f{.} is the sum of the components of the argument vector, which corresponds, in the case of a planar
arm, to the absolut of the end-effector. u{lo) is the initial configuration vector.

*We can note that the combined field is "sharper” than the original target field which allows infinite equilibri-
um configurations if the system is redundant (the null-space of the transformation). The second field reduces the
dimensionality of this space, increasing the cost of configurations whick do not match that constraint.
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Figure 4; Reaching movements with a planar 3 degree-of-freedom arm. Left: only the target
constraint is present. Right: for the same target, a constraint of parallelism is added.
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