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Abstract— A method for the dynamic simulation of multi-
arm robots by taking the mechanism of various contact types
into consideration is proposed. The system of multi-arm
robots grasping a common object forms a multiple closed-
chain mechanisms., Bach arm and the object can be modeled to
be an open-chain with kinematic constrainis on its end-
effector motion. The dynamics of each arm is expressed using
the Appel’s method, where the end-effector’s constraints of
each arm are derived from the object motion. As a result, a
parallel computation of joint acceleration for each arm can be
. performed , and various contact types between the end-
effectors and the object can be expressed by constraint equa-
tions. Numerical examples are carried out to evaluate the
validity of the proposed method.

I INTRODUCTION

The dynamic computer simulation of the multi-arm
robots have been studied by several researchers. For
example, Anderson (1] presented a method for the for-
ward dynamics of two cooperating manipulators by
regarding the interactive forces as the external forces
exerted on the end-effectors. Oh and Orin [2], Rodri-
guez [3] and Murphy et al. [4] developed the methods of
dynamic computer simulation for an arbitrary number
of robot arms grasping a common object. It is noted
that an unified approach was formulated by Oh and
Orin [2], such that a single set of equations may describe
dynamics of both multi-arm robots and legged vehicles.
However, all of the previous works have concentrated on
the multi-arm robots with only the rigid contact
between the end-effectors and the object.

The present paper analyzes the dynamic equations of
motion for multi-arm robots grasping a common object,
by taking the mechanism of contact-type into considera-
tion, such that the method presented here can be
applied for various contact-types between the end-
effectors and the object. Also, this method allows each
arm of the multi-arm robots to be simulated in a paral-
lel way using the Appel’s method.
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When the multi-arm robot grasping a common object,
multiple closed-chain mechanism will be formed. Each

‘arm and the object can be considered as an open-chain

with kinematic constraints on its end-effector motion.
Using the forward dynamics of each open-chain, the
motion equations of the object, the kinematic relation-
ships between the object and the end-effectors and the
kinematic relationships between the end-effectors and
the joints, the joint accelerations can be calculated. The
forward dynamics of each open-chain can be derived
separately using the Appel's method, where the
acceleration constraints of each end-effector are
obtained from the object motion. Therefore, each arm
can be simulated simultaneously. At the same time, the
various contact-types can be expressed in the kinematic
relationships between the object and the end-effectors.
First of all, the application of the Appel’s method for
dynamic analysis of a single-arm robot with kinematic
constraints is reviewed, followed by the derivation of the
kinematic relationships of the multi-arm robots. Then,
the forward dynamics of multi-arm robots grasping a
common object is derived. Finally, numerical analysis
are carried out and the validity of this method is shown.

0. Dynamic MoDEL OF SINGLE—-ARM ROBOT :
UNCONSTRAINED CASE

In this section, the single-arm dynamic model for the
unconstrained end-effector based on Appel’s equations
will be reviewed. This model was developed in its final
form by Potkonjak and Vukobratovich [5].

Consider a mechanism of the open-chain type, formed
by = rigid bodies of arbitrary form, without branching,
and mechanism segments are intercounected by the
rotational or translational joint, such as shewn in Fig.l1.
The kinematic variables, such as angular velocity &,
angular acceleration &, and linear acceleration &; are
determined with respect to the local coordinate system
(the body-fixed coordinate system) of the i-th link. The
relations determining these kinematic quantities are



*

- A JS‘T-E‘J*;*Q»; -

derived in the same way as in the Newton-Euler’s
method
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Fig.1 Single-arm robot: unconstarined case

where Aj; is the transition matrix from the j-th body-
fixed coordinate system to the i-th body-fixed coordinate
system and s; is the joint type {s; = O if the joint is
rotational, and s; = 1 if the joint is translational). ¢;
denotes the unit vector of the joint axis respect to the
body-fixed coordinate system, 7;_;; denotes the vector
from the i-th joint to the center of mass of the (i-1)-th
link respect to the body-fixed coordinate system and g¢;
denotes the generalized coordinate of the i-th joint. "x"
denotes the vector cross product.

By introducing the matrices 2, &, 8, © and the gen-
eralized coordinate vector ¢ =[g; ¢ q,,]T, we can
write the linear acceleration and the angular accelera-
tion in the form : :

i; = JB '9’. + 0, (5}
E=07+2, (6)

where  B=[8i g} - Bioo0 -0, ©=[],
R=[Q; Q - Q00 - 0 and &=1[y}. Q}, 8},
§', and «' are derived from the recursive expressions (1)
- (4). Thus, for the i-th iteration:
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Now, using (5) and (6), the Gibbs-Appel’s "accelera-

tion energy” function, S, for the single-arm robot will
have-the form: '

S=B{Wi+Vi+D, (14)

where W= W;, V=YV, and D=3}D;,. W;, V,,
i=1 i=1

and D; are given by
W, =mQTQ + 8718,

i=1

(15)

V: = moTa + 8T8 - 478, (16)
D;= ¥ mOTo + ¥ 87 - i'e, (17)
i=(I;- &)xa;, (18)

where I, is the inertia tensor of the i-th link respect to
the body-fixed coordinate system, m; is the mass of the
i-th link and " - " denotes the vector dot product.

On the other hand, the Appel’s equation can be writ-
ten in the matrix form
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where Q is the vector of generalized forces. Substituting
(14) into (19), we can obtain the dynamic equation of
the unconstrained single-arm robot

(19)

Wg=¢Q- VT, (20)
The vector Q has the form
Q=P+ 7, (21)

where P is the joint torque vector. ¥ = [y; v, = v,]T
is the gravitational torque vector which calculated
independent of P, and given by

n-1 n-l
vi = (&g mipa)sit(1=s) Y Imiss g, &, i (22)
k=0 k=0
Cx k-
T‘;: = 2 Titpitp — E Tidpitpsl 3 (23)
p=0 p=C
where "| |" denotes the vector box product and geR? is

the gravity acceleration vector. It should be noted that
the generalized forces are calculated recursively in the
algorithm, and this calculation can be performed in the
world coordinate system or in the body-fixed coordi-
nated system.
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TI1. REPRESENTATION FOR THE CONSTRAINED CASE

Now, we show how the results obtained for the uncon-
strained case can be used for solving the dynamics of the
single-arm robot, where some or all of the end-effector
directions are constrained by the environment. This
method was proposed by Masuda et al. [6].

n-1

Fig.2 Single-arm robot with kinematic constarints
on its end-effector

Consider a single-arm robot constrained by the
environmeént shown in Fig.2. In this case, there are
interaction forces/moments between the end-effector
and the environment according to the constrained direc-
tions. .

Let us define AeR® is the vector of the
forces/moments exerted on the constrained end-effector,
and /. is the number of the end-effector directions con-
strained by the environment. We treat these
forces/moments as the external forces/moments acting
to the arm, such that the dynamic equation of the robot
arm becomes

Weg=P+Y-VT4 I, (24)

where JceRz‘x“ is the Jacobian matrix corresponding to
the constrained directions of the end-effector.

On the other hand, we have the kinematic relation-
ships for the constrained directions such as given by

(25)

where Xc is the constrained end-effector velocity vector.
By differentiation we can find

.
.
Xc": ¢q>

X:mjc’q’+jcé‘ (26)

So, we can rewrite {24) and (26) in the compact form

Wo-IEg| | [Pry=YT
“‘Jc 0 A Jcé—Xc '
where Xc can be computed from the constraint condi-

tion. For example, if the end-effector cannot move in
any direction, then

(27)

X, =0. (28)

Equation (27) expresses the dynamic equation of the
single-arm robot constrained by the environment. The
Jacobian matrix J, and J.¢ can be computed using the
recursive expressions which are similar as in (7) - (13).

The manipulator mass matrix W is a positive definite
matrix and invertible, such that the coefficient matrix of
(27) is not singular. Therefore, the joint acceleration
vector ¢ and the force/moment vector A can be solved

by
i _| 7 ~JT
A -J, 0

IV. DYNAMIC SIMULATION FOR MULTI—-ARM ROBOTS

-1

P+y-vT
G ¥ } : (29)

The multi-arm robot grasping a common object to be
simulated is shown in Fig.3. The number of arm is m,
and 7y is the number of joint of the k-th arm. In the
present paper, it is assumed that the contact points
between the end-effectors and the object are constant,
i.e., there is no slip motion between the end-effectors
and the object.

arm-m

arm-2

Fig.3 Multi-arm robot grasping a common object

We define a set of Cartesian coordinate systems as
follows : (i) the world coordinate system, I, is an
immobile external coordinate system as a reference
frame, (ii) the transmission coordinate system (7], I,
is a coordinate system on the object at the k-th contact
point where the z axis is normal to the object and the
others are tangential to the object, and (iii) the object
coordinate system, X, is a mobile coordinate system
according to the motion of the object.

A. Kinematic Relationships of Multi-Arm Robots

The kinematic relationships of the multi-arm robot
grasping a common object can be summarized in Fig.4.
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Fig.4 Kinematics of the multi-arm robot

The matrix GkERIXI"' specifies the relationships
between the object force/motion and the transmission
force/motion of the k-th arm, depending on the location
of the contact points, the contact type and the reference
point on the object such as the center of mass. [ is the
number of the end-effector directions of the k-th arm
constrained by the object, and [ is the dimension of the
task space. The matrix G, is given by

Gy = BiRiyHY (30)

where Rj; is the rotation matrix from the transmission
coordinate system, I,4, to the object coordinate system,
¥ ,. Furthermore, the matrix By is given by

[ 2 o
Fl (ra) x B}

where E€R%*® denotes a unit matrix, 0€ is the null
matrixX, o = [Tae Tay ra: |7 is the position vector of
the k-th contact point from the origin of the object coor-
dinate’ system, L, and (ry) x€R¥® is an anti-
symmetric matrix obtained by applying the cross opera-
tor, " x ", to the position vector, r4, as the following

(31)

R3X3

0 "*7“_.;“ rck‘y .
(ra) x =1 Tae 0 ~ree (32)
—-r‘,_.;,_,,, Teks 0

The matrix H;:ER:“ X expresses the filter characteris-
tics which filter out some forces/moments of the k-th
end-effector and transmit other forces/moments to the
object depending on the contact type.

The matrix J,; is the Jacobian matrix relating the
joint displacements to the transmission displacements of
the k-th arm, represented in the transmission coordinate

system, L4, and given by

! 7,
Ji,k = BRI €RT, (33)

where kaER *is the Jacobian matrix relating the joint’
displacements to the end-effector dxsplacements of the
k-th arm, represented in the world coordinate system,

., and R”k is the rotation matrix from the world coor-
dinate system, ¥, to the transmission coordinate sys.
tem, T,

B. Motion Equations

The dynamic equations of the multi-arm robot grasp.-
ing a common object are formed by the dynamic equa-
tion of each arm, the motion equation of the object and
the constraint equation relating the object motion and
the motion of each arm.

When the multi-arm robot grasping a common object,
multiple closed-chain mechanism will be formed. Bach
arm and the object can be considered as an open-chain
with kinematic constraints on its end-effector. There.
fore, from {27), the dynamic equation of the k-th arm is

given by
We =Tl @
~Je 0 Atrk

Gn ,,] is the generalized coordi-

Pk"*' Yi—

4
J trk(Ik‘“Xtrk ( )

where ¢ = (g2 g2
nate vector of the k-th arm, X,,.k and Ay are the vector
of the transmission acceleration of the k-th arm and the
vector of the forces/moments exerted on the constrained
end-effector of the k-th arm, respectively, which are
represented in the transmission coordinate system, g,
and J,.qx is computed by

- . » $rk . .
Jea@e=Hu(Ry Tt R Tt ) G -

The motion equation of the object is given by

m,E 0] .. myg
[ 0 I,,:l X, = [—-wox(Ia' wo)} +Fo, (36)

where m,, I, and w, are the mass, the moment inertia
tensor and the angular velocity vector of the object,
respectively. X, and F, are the vector of the object
accelerations and the vector of the forces/moments act-
ing on the object, respectively, which are represented in
the object coordinate system, X .

Since the object and the end-effectors form the paral-

(35)

lel link structure as shown in Fig4, the net
forces/moments acting on the object is given by
m
Fo= 3 GFpy . (37)

k=l

On the other hand, the relationships between the
transmission velocity of the k-th arm and the object
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velocity is given by
Xew= GF X, . (38)

Because of the matrix G is a constant matrix, then we
can obtain

X,.=G6rX,. (39)

Equations (34), (36), (37) and (39) express the
dynamic equations of the multi-arms robot grasping a
common object, where (39) can be interpreted as a con-
straint equation of each arm.

Consequently, the algorithm for the forward dynamics
of the multi-arm robot proposed in this paper is sum-
marized as the following:
step 1 At the time, ¢, the generalized coordinate vector
of positions, g (1), velocities, g (¢), and the vec-
tor of generalized forces, Py (), of each arm are
given.

Using (36), compute the object acceleration,
X, (t), where F, (1) is computed using (37).
Fug (1) in (37) is computed by

Feie (8) = (Jiz (0) P (1) (40)

where "+" denotes the pseudo-inverse matrix.
Then, using (39), compute the transmission
acceleration of each arm, Xz (£).

Using (34), compute ¢ (¢) and Ay (2) for each
arm, and then integrate the g (t) to obtain
gx (++At) and ¢ (t+At). Increase ¢t by At,
then return to step (1). Note that P (t+At) is
given according to the control law.

On the other hand, the inverse dynamics of the
multi-arm robot proposed in this paper is summarized as
the following:
step 1 The desired object trajectory, X¢ (1), and the
desired forces/moments exerted on the con-
strained end-effector of the k-th arrn, A (t)
are given. The object acceleration, X, (), is
derived from the given object trajectory.

The transmission acceleration of the k-th arm,
X (1), is computed using (39). Then, the joint
acceleration of each arm g, () is computed by

G (1) = (o (0)F Kk (0=Time (0 (1) ] - (41)

Compute the joint torque of each arm, P (i),
using the following equation

P (t) = Wi ()4 (1)
=Y ()+VE (1) =Ji (DA (2) -
Increase ¢ by At, then return to step (1).
As we can see, the computation of joint acceleration,
qi, of each arm can be performed independently. It

means that the dynamics of each arm can be simulated
in a parallel way. On the other hand, by introducing the

step 2

step 3

step 2

step 3

(42)
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transmission space in the kinematic relationships of the
multi-arm robot enable us to express the contact type
between the end-effectors of each arm and the object
using the matrix Hy in (37), such that the simulation
method presented in this paper can be applied for vari-
ous contact types between the end-effectors and the
object.

V. NUMERICAL ANALYSIS

To demonstrate the effectiveness of the proposed
method for various contact types, a numerical examples
was performed for the case of the cooperative motion of
a planar dual-arm robot (ny=n,=3; 1=3) grasping a
common object.

The contact type between the arm-1 and the object is
the rigid grasping, ie., all of the end-effector
forces/moments can be transmitted to the object
(I = 3) and between the arm-2 and the object is the
point contact with friction type, i.e., the end-effector
forces can be transmitted in any direction to the object,
but the end-effector moment cannot be transmitted
(I; = 2). The link parameters of the dual-arm robot and
the object parameters are shown in Table L.

TABLE1I
LK PARAMETERS OF A PLANAR Duar—ArM Rosor
AND THE OBJECT PARAMETERS

arm-k {(k=1,2 .
link i (i(-l,"",é) object
fength (m) 0.2000 0.1800
mass (kg) 0.5000 5.0000
center of mass {m) 0.1000 0.0900
moment of inertia {kg'm®) 0.0015 0.5000
The initial posture is shown in Fig.5, where

X, (0) = [0.203225 (m) 0.598174 (m) 0.0 (red) ]%. The
task objective is to move the ob_]ect from its initial posi-
tion to the desired final posmon Xxé () = [0.203225 (m)
0.498174 (m) =/3 (rad) ]T and t; = 1.0 sec.

We choose a PD controller in the task space for posi-
tioning the object, where the joint torques of each arm
are calculated using the following equations

P () = JFun (1) (43)
. d .

Fy ()=G* [K(X3 ()-X, (1) + B(X (1)-X.)] {44)
where F, (5) =[Fn () Fi (1)]7, G =[G, G,] and
Gy (k=1,2) is given in (30). KER“:‘ and BGR””“ are the
position and the velocity feedback gain matrices, given
as  K=diag. [100.0 (N/m) 100.0 (N/m) 100.0 (N.m/
rad)] and B=diag. [10.0 (N.sec/m) 10.0 (N.sec/m)
10.0 (N.m.sec/rad) ], where "diag. [ ]" denotes a diago-
nal matrix,



The desired trajectory of the object is given by
X4 (t) = 0.203225 (m), (45)
X2, (1) = 0.598174~1.08°+1.5¢*~0.6t° (m), (46)
X% (1) = 10.07/38°-5.0xt*+2.0nt> (rad) . (47)

The sampling time At is set to 0.0001 sec.

Fig.6 shows the stick pictures of the dual-arm robot
under the PD controller, and Table II shows the angle
between the axes of the last link of each arm and the
axes of the object ( the contact-angle ).

Tt can be seen that for the rigid grasping, the
contact-angle between the end-effector of arm-1 and the
object is constant. On the other hand, for the point con-
tact with friction, since the end-effector’s moment of
arm-2 cannot be transmitted to the object, the end-
effector can rotate freely. As a result, the contact-angle
between the end-effector of arm-2 and the object
changes during control.

VI. CONCLUSION

We have proposed the dynamic simulation method of
a multi-arm robot using Appel’s method. It was shown
that the dynamic equation for a multi-arm robot grasp-
ing a common object is formed by the dynamic equation
of each arm, the motion equation of the object and the
constraint equation.

The dynamic equation of each arm has a form identi-
cal to the dynamic equation of an open-loop single-arm
with kinematic constraints on its end-effector, where the
end-effector’s constraint equation is obtained from the
object motion. By using the Appel’s method, each arm
of the multi-arm robot can be simulated in a parallel
way, such that the parallel computation can be imple-
mented. Also, The proposed method can be applied for
various contact types between the end-effectors and the
object, since the mechanism of the forces/moments
transmission between the end-effectors and the object is
taken into consideration.
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arm-1 arm-2
X, (0) = [0.203225 (m) 0.598174 (m) 0.0 (rad) |T
X3 (t) = [0.203225 (m) 0.498174 (m) =/3 (rad) |7
Fig.5 Planar dual-arm robot grasping a common object:
initial posture

arm-1

Fig.6 Stick pictures of a planar dual-arm robot
during the object movement

TABLE O
ANGLES BETWEEN THE AXES OF THE LasT LK
OF EACH ARM AND THE AXES OF THE OBIECT

time (s} Arm-1 Arm-2
0.0 0.523599 (rad) -0.523599 (rad)
0.2 0.523599 (rad) -0.506423 (rad)
0.4 0.523599 (rad) -0.309309 {rad)
0.6 0.523599 {rad) 0.119070 (rad)
0.8 0.523589 (rad) 0.510500 (rad)
1.0 0.523599 {rad) 0.613626 (rad)
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