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Absiract~ One of the basic characteristics of the dual-arm
robots which manipulate a common object is the redundancy
of joint degrees of freedom. The present paper proposes a
compliance control method utilizing kinematic redundancy of
the dual-arm robot. The method presented here can regulate
the compliance or stiffness of several points on the dual arm-
robot as well as the object compliance through regulation of
the joint stiffness.

I. INTRODUCTION

There are many tasks that require cooperative mani-
pulation by the dual arm-robots for industrial manufac-
turing, ranging from simple handling tasks to more com-
plicated assembly tasks. Also, the dual-arm robots may
be applied to robotics in unstructured environments
such as the space and the ocean where auxiliary equip-
ments are not available [1].

One of the most important features of the dual-arm
robots which manipulate a common object is that the
arm and the object form a closed kinematic chain. From
this feature many interesting problems arise, and a
number of interesting works have been appeared. Most
of these works focused on modeling and analysis of the
closed kinematic chain [2], [3] and [4], load or force dis-
tribution problem [5], [6], [7] and [8], and the dynamic
control [9], [10]. However, less attention has been paid
to the compliance control for the dual-arm robot.

The compliance control is one of the most effective
control methods for manipulators with interactions to
their environments. The compliance control provides a
mechanism for controlling manipulator position or force
and facilitates stable behavior during the transition
between unconstrained motion and sudden contact with
the environment. Compliance (stiffness} of the parallel
link structure have been studied by several investiga-
tors. For example, Mason and Salisbury [11], Nguyen
[12], and Cutkosky and Kao [13] analyzed the grasp
compliance for multifingered robotic hand, and an
interesting compliance control method for parallel mani-
pulators utilizing their internal forces was proposed in
{14].

As well known, one of the basic characteristics of the
dual-arm robots is the redundancy of joint degrees of
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freedom. The manipulator with more joint degrees of
freedom than the minimum number required to the
given tasks can offer significant advantages: for instance,
avoiding obstacles or singular configurations of the
manipulator in positioning tasks. Although it is widely
recognized that the kinematic redundancy represents a
key towards more flexible and sophisticated manipula-
tions, no previous investigations of the compliance con-
trol for the parallel link structure have positively util-
ized kinematic redundancy. Utilizing redundancy, the
dual-arm robot can perform subtasks while controlling
the object compliance. 7

Reference [15] proposed Direct Compliance Control
(DCC) for parallel link arms which utilizes the
kinematic redundancy of the robotic system in order to
make the joint stifness matrix become a diagonal
matrix. On the other hand, Tsuji, Takahashi and Ito
proposed a method called the Multi-Point Compliance
Control (MPCC) for a single redundant manipulator
[16) and [17]. This method can regulate not only the
end-effector compliance but also the compliance of
several points on the manipulater’s links utilizing
kinematic redundancy.

In the present paper, the MPCC for dual-arm robots
is developed. When a rigid object is manipulated by
dual-arm robots, we may model the object as a virtual
link depending on the size of the object and the contact
type between the object and the end-effectors. Then
the system can be viewed as a single manipulator with
closed kinematic chain and the MPCC can be developed.
The method presented here is effective for certain
environment where some obstacles impose restrictions
on the task space.

First of all, we formalize kinematic relationships
between the joint compliance and the compliance of
several virtual objects on the links including the object.
We then derive the joint compliance (stiffness) to
achieve the desired multiple objects compliance. The
dual-arm robot may become over-constrained depending
on the contact type and the number of the objects
which we regulate their compliance. The method
presented here can give the optimal joint compliance
(stiffness) even for the over-constrained cases in the
least squared sense. Finally, the effectiveness of the pro-
posed method is shown by computer simulations.



I1. FORWARD KINEMATICS OF COMFLIANCE MATRICES

FOR DUAL-ARM ROBOTS

We consider & dual arm robot manipulating a com-
mon object as shown in Fig.1. The robot is performing a
task which requires the object’s compliant motion. Since
the robot is close to obstacles, the arm may collide with
them due to some external force. Then, as shown in
Fig.1, we locate a virtual object on the closest point of
the arm to the obstacles. Using the virtual objects, the
interaction between the robot and its environment can
be considered within the framework of the compliance
control. For example, to aveid any collision, the compli-
- ance of the virtual object should be as small (stiff) as
possible in the direction of the obstacles {16].

A. Forward Kinematics for Object Compliance

We define a set of Cartesian coordinate system as fol-
lows (see Fig.1): (i) the world coordinate system, I, is
an immobile external coordinate system as a reference
frame, (ii) the transmission coordinate system, Zy, is a
coordinate system on the object at the contact point
where the z axis is normal to the object and the others
are tangential to the object, and (iii) the object coordi-
nate system, £, is a mobile coordinate system accord-’
ing to the motion of the object, but the direction of its
axis z, Y, 2, are constant i.e., parallel to the X, ‘

Forward force/motion relationships . of dual-arm
robots grasping a common object can be summarized in
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Fig.1. Dual-arm robot close to obstacles.
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Fig.2. In the present paper, it is assumed that the con.
tact points between the end-effectors and the object are
constant, i.e., there is no slip motion between the end.
effectors and the object. For derivations of the
force/motion relationships, see [11], {13] and [18].

The matrix S€R”? specifies the relationship between
the object space and the contact space depending on the
locations of the contact points and the reference point
on the object such as the center of mass, where [ is the
dimension of the task space. The matrix HeR a* ) X3
expresses the filter characteristics which filter out some
forces of the end-effectors and transmit other forces to
the contact point space depending on the contact type,
where I; (i=1,2) denotes the number of forces transmit-
ted from the end-effector of the i«&h;gyjﬂg)the contact
point space. The matrix J,€R % 4s a con-
catenated Jacobian matrix of both arms relating the
joint displacements to the end-effector displacements,
represented in the transmission coordinate system,
where m; denotes the number of joints of the i-th arm.
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space ddt—=s T
._Kj

Fig.2. Force/motion relationships for the object.

Using the force/motion relationships shown in Fig.2,
we can derive the forward kinematic relationships which
relate a set of {m;+m,) joint coordinates to a set of [
object coordinates. The forward kinematic equations of
the object are given by :

dXo = GodX, = B,d9,
F,= Gzpotr:

T
T = .BoFoirx

(1)
(2)
(3)

where



G, = AsT eplat ! (4)
-] b

! l mybmy
ﬁo = H.}o ER( et fea )X (myt ). (5)

To derive the forward kinematics for the object com-
pliance, we define the compliance matrices of each space
as follows:

Joint Space:
d8 = ~Cjm, (6)
C; ER(W}"")X(""‘W’) : joint compliance
End-effector Space:
iX, = ~C.F,, (M)

C,eR™? ; end-effector compliance

Transmission Space:

dXofr = - ofrFo!ﬂ (8)

(I¢I+Ic2)x(lcl+l:2 )

C.ER : transmission compliance

Contact Point Space:
dX. = -C,F., 9)
C.eR*™? : contact point compliance
Object Space:
dX, = ~C,F,.

C,eR™ : object compliance

(10)

Using (1), (2), (3) and the compliance matrices
defined above, we can obtain the forward kinematic
relationship from the joint compliance to the object
compliance via the transmission compliance, such as
given by

Cotr = GOCOG;P!
Cotr = ﬁocjﬂg;
where G, and 3, are given in (4) and (5).

(11)
(12)

B. Forward Kinematics for Virtual Object Compliance

To derive the kinematic relationship for the virtual
object compliance, we introduce the virtual space shown
in Fig.3 with the same kind of the definition of
stiffness/compliance matrices as (6)-(10).

Furthermore, for the i-th virtual object, we define
only two kinds of coordinate systems: (i) the virtual
object coordinate system I, and (ii) the world coordi-
nate system, &,

For the virtual object, the contact type between the
virtual end-effectors and the virtual object is always like
rigid grasping, i.e., all forces of the virtual end-effector

can be transmitted to the virtual contact point. More-
over, the virtual object is always like a point object. Ag
a result, we can see

Sy =L L), (13)
H, = I, (14)

‘where subscript i stands for the i-th virtual object and
I is a Ix! unit matrix.

The forward kinematic equations of the i-th virtual
object are given by :

de’n' = G,,de = ﬁ“'de,
va’ = Gv:‘::thri)

T
T = BoiF i

(15)
(16)
(17)
where
G, = H ST eR™ 1
Bui = Hyly ERZ:X (mﬁ%{

(18)
(19)

and J,; is the concatenated Jacobian matrix of both
arms relating the joint displacements to the i-th virtual
end-point displacements in the virtual object coordinate
system.

On the other hand, the forward kinematic equation
from the joint compliance C; to the i-th virtual object
compliance C.; € R™ can be derived in the same way
as the previous section:

Cvtr:‘s‘ = Gn‘ Cwii Gg’
Corit = BuCiBE

(20)
(21)

virtual object = Cuoii
space vois—Fvoi /-
y T yoii
) 53 v
virtual contact /" ¥ ~Cyei;
int dXyei Fuci
point space vei _—X——>‘m “vei .
Hy Hei
virtual transmission” * —Cyrii
space dng,-;—-——-——-é-EK" Fotri
—Hulrn T
Hm' Huz‘
virtual end-effector ~Cueii
space X yei=g—= Fuei
R ven T
Jui | Tui

. (Y PR
joint space 4§ =2 1
-K;

Fig.3. Force/motion relationships for the i-th virtual object.
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C. Concatenated Forward Kinematics

In order to express the forward kinematics for the
object and the virtual object simultaneously, we con-
catenate those forward kinematics:

dX, = GdX = pdo, (22)
F = GTF,, (23)
T = ﬁTFfr) » (24)

where F is the concatenated vector of the resultant
forces/moments on the multi objects at the reference
point, and F, is the concatenated transmitted
forces/moments on the multi objects at the contact-
point from the end-effector. Also, dX and dX,, are the
concatenated displacements of the multi objects and the
concatenated transmission displacements, respectively,
and

B =64 s BTN, - (28)
G = block-dieg. |Gy =" Geney G, ), (26)

n is the number of the objects which we want to regu-
late their compliance. block-dieg.[] denotes a block
diagonal matrix.

Consequently, the concatenated form of the forward
kinematic from the joint compliance to the object and
the virtual object compliances can be expressed as

C, = GCGT, (27)
C,, = BCHT, (28)
where
[ Cro11 Coor2 '”C'wxn
Coom C. = Coozn
e e (29)
! Cront Cron2 *** Cronn
[ Curt1 Cutriz ~* Cotrin
c, = Cony Cw:z‘z “Cotrzn , (30)
5 Cviml Cvim? '“Cvtmn

and Cponn=Coy Comn=Cotr - C.ij represents the cross
compliance between the i-th and j-th virtual objects and
C\irij tepresents the cross compliance between the i
and the j* virtual transmission compliance.

I MULTI~POINT COMPLIANCE CONTROL FOR
DuaL—-ARM ROBOTS
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Now, let's assume that the desired compliance matrix
C* is given according to the tasks. We should solve (27)
as a first step and then to solve (28) for the joint com-
pliance matrix C;.

Equation (28) may be underconstrained, overcon-
strained or singular depending on the matrix 8. To
derive a general solution of (28), we use the maximum
rank decomposition of the matrix §, such that the (28)
can be divided into two equations [16]

Cpp = ByCifY (31)

and

Ctr = ﬁacﬁﬁg‘s (32)

where (3, and 3, form the maximum rank decomposition
of B: 8 = BBy (rankB = rankB, = rankB, = s).

We should solve (32) as a first step. In general, the
exact solution Cj which satisfies (32) does not exist,
since the matrix 8, is a full column rank matrix. In this
case, the goal is to find a matrix Cj to minimize

G(Cp) = [|W(Cs, ~ C, Y WT]
G(Cz) = || W(Cy, = B.CaBDY W],

where C}, is a desired concatenated transmission compli-
ance matrix, computed from (27) for a given desired
concatenated compliance matrix C'. ||A]] stands for
matrix norm defined by

[|4]] = [r(4T4)]"*

and tr (AT4) denotes trace of matrix ATA.
Using the differential formulas about trace of matrix,
we can find an optimal solution such as given by

Cp = (WB)* WCL W (WB,)* T (36)
(Wﬂa)# = {(Wﬁa)TWﬁa}ni( Wﬂa)T‘ (37)

The weighting matrix W is a positive definite matrix
which can assign order of priority to each object accord-
ing to the given task.

The second step is to solve matrix equation (31).
Since the matrix §; is of full row rank, the solution C;
which satisfy (31) always exist. The general solution is
given by

(33)
(34)

(35)

G; = B Cald])* + [2-610,2068)7],  (39)

+
where Z € R(m1 ) (mit ) is an arbitrary constant
matrix. The matrix Z can be utilized in the other kind
of subtasks. Then, we deftne the joint stiffness matrix

Kj as
K=Cf. (39)

Equations (36), (37) and (38) give the closest object
compliance to the desired one in the least squared sense



for the cases which the desired stiffness cannot be real-

ized. On the other hand, when the exact solution of C;

in (28) exists, and we choose the minimum norm solu-
tion of the joint compliance matrix in (38), the compu-
tation of the joint compliance matrix becomes simple :

C; = prenpnt, (40)

because § has a full row rank.

-IV. APPLICATIONS TO OBSTACLE AVOIDANCE

To demonstrate the effectiveness of the proposed
method, simulation experiments were performed. In the
simulation experiments, the MPCC is applied to an obs-
tacle avoidance problem using a planar dual arm robot
as shown in Fig.4 (m; = 6, m, = 3,1=3).

Virtual object
coordinate x,

system 9;-5 ..... Yo
Yv . p; 8y
'\/// 014
613 @obstacle -
S Y -
i 011

. virtual object

6, = (155.0,~60.0,—30.0,—40.0,~25.0,—37.5) (deg)
8, = (52.5,57.5,55.0) (deg)

Fig.4. A planar dual-arm robot close to the obstacle.

The dual arm robot is needed to perform a task which
requires the object to be soft in the direction of z axis
and the rotation (0.005m/N and 0.1red/Nm, respec-
tively) and to be stiff in the direction of y axis
(0.001m/N) in the object coordinate system. And the
third link of arm-1 lies between a couple of obstacles. A
virtual object is located on the middle point of the third
link. To avoid a collision with the obstacles, we wish to
regulate the virtual object compliance to be stiff in the
direction of y, (0.001m/N) in the virtual object coordi-
nate system , while satisfying the desired object compli-
ance. As a result, the desired compliance matrix
C* € R®™ is given by

69

C* = dieg.[0.005(m/N), 0.001(m/N), 0.1(rad/Nm),
0.005(m/N), 0.001(m/N), 0.01(rad/Nm) |,

where diag.[ | denotes a diagonal matrix.
The simulation experiment was performed using the
PD controller,

= K;d¢ + B,é, (41)
where BjER(mﬁm’}x(mﬁm’) is a nonsingular feedback
gain matrix. We used the Appel method [19] which
extended for the dual arm robots grasping a common
object, and' the link parameters of each arm are shown
in Table 1. The mass and the moment of inertia of the
object are 5(kg) and 0.5(kg-m?) respectively.

TABLE 1

LK PARANETERS OF THE DUAL-ARM Rosor

Link i (i=1,...,9)
Length {m) 0.2
Mass (kg) 0.5
Center of mass {m) 0.1

Fig.5 shows the initial and final postures of the dual
arm under the MPCC , where the external force,
fet = [~15(N), —40(N), 0(Nm) |7 in terms of the object
coordinate system , is exerted to the center of mass of
the object. The joint stiffness K; is calculated under the
rigid grasping {l.; = Io = 3).

On the other hand, Fig.6 shows a simulation result
where we consider to control only the object compliance.
The displacements of the object for the two kinds of
compliance control (using the MPCC and consider to
control only the object compliance) are almost the same.
In terms of the virtual end-point, however, the effect of
the MPCC appears clearly. It can be seen that the
MPCC can utilize effectively the redundant joint
degrees of freedom.

V. CONCLUSION

We have proposed the Multi-Point Compliance Con-
trol method for dual arm robots utilizing kinematic
redundancy. The method was able to regulate the com-
pliance or stiffness of several points on the dual arm’s
links as well as the object stiffness.

In the present paper, we concentrated on the resul-
tant forces of the object through the regulation of the
joint stiffness according to a given task: for example, to
restrain some external forces or to produce a desired
force to generate a certain trajectory. In order to estab-
lish the compliance control of the parallel structure in



general, the control of the internal forces between the
end-effectors and the object should be considered,
because the internal forces have some effects on the
object compliance [14].

Further research will be directed to develop the dual
independent controller configuration algoerithm. Also, it

is interest to develop the Multi Point Impedance Con-

trol which enable to control the impedance (not only the
compliance) of several points simultaneously.

obstacle .
object

xW
: ,
World coordinate system
virtual object
initial posture
final posture

Fig.5. Arm configuration for a disturbance force with consideration of
obstacle avoidance using MPCC.
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Fig.6. Arm configuration for a disturbance force without consideration
of obstacle avoidance.
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