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Abstract: We propose a new conventional method 10 reconstruct 3D
motion of rigid polyhedral objects from a sequence of monocular images. In
general the problem is ill-posed, therefore additional information is required
to recover depth. In this paper we uiilize line correspondence between
sequential images and existence of parallel line segments in the scene. The
relation between the coordinates of points can be described only by 2
rotation matrix, if it is formulated refatively. Then if there exists a pair of
parallel line segments, the matrix can be solved by using lincar equations,
Alter that the wransladon vector is computed. It is necessary that there exists
at least one pair of parallel line segments in the scene in order 10 obtain
motion parameters. We also propose the method to extract pairs of parallel
line segments in the image. Finally some experimental results for simulated
data sets are demonstrated.

1. Introduction

The reconstruction of 3D motion or structure from a
monocular image is ill-posed problem, because the information
on depth would be reduced through the projection onto the
image. It follows that it is necessary for the reconstruction to
introduce some constraints about characteristics of motion or the
structure of the objects. In the problem of "Motion from Image
Sequence"” there often assumed that the motion is sufficiently
smooth [Marr, 1982; Kitahashi, 1989; Aggarwal and
Nandhakumar, 1988].

Ullman studied motion estimation based on points
correspondence between sequential images by using the
assumption of rigidity of the objects. He showed it is possible 10
obtain motion and structure of an object from points
correspondence of 4 points on 3 frames of the sequential images
under the parallel projection, and 5 points on 3 frames under the
perspective projection [Ullman, 1979]. Tsai and Huang derived
linear equations by using decomposition of the singular point of
the matrix which contains medial parameters obtained from
motion information {Tsai and Huang, 1984). The equation
consists of 8 variables and is linear, and it enables us to obtain
solutions from § points correspondence on 2 frames under the
perspective projection. They realized to get linear solution, while
it had been analysed using nonlinear equations. It is, however
impossible 1o solve the linear equations, if all the 8 points lic on
2 planes where one of two planes intersects the origin of 3D
coordinates (at least 5 of 8 points satisfy the condition), or on

the surface of the cone which intersects the origin (atleast 6 of 8
points satisfy the condition).

On the other hand we proposed 2 method combining optical
flow and correspondence of line segments in which we derived
linear equations by using an assumption of existence of two pair
of parallel line segments {Joko et al, 1990). However it was

limited to motion with small displacement between points on two
different frames, because the velocity components were
approximated using differential equations.

In this paper we propose a linear algorithm to estimate
motion of the rigid object utilizing the relative expression of
coordinates by assuming the existence of a pair parallel line
segments. This method does not adopt any approximation sO
that it yields error-free results for all types of motion. It is also
possible to examine if a chosen pair of line segments is parallel
or not before estimating the motion parameters. The present
method can be applied to a number of industrial applicatons,
because it needs only a pair of parallel line segments, i.c. 4
points correspondence on 2 frames.

2. Formulation of Motion

In this paper we focus on the motion reconstruction from
two sequentialized images onto which one rigid object in the
scene is projected by the perspective projection. In this section
we formulate the motion of one end-point of a line segment ‘f"d
the relative motion of another end-point. Motion of 2 line
segment on the image is shown in Fig.1. We define (X, J’).as
one end-point of a line segment and (r, 5) as the relati¥®
position of another one, and the positions after motion are
defined as (x’,y) and (', s") respectively as well as oncs
before motion.

2.1 Motion of End Points of a Line Segment on
We show the geometrical relationship between the m°??n
of point P in the scene and the image plane in Fig.2. The ong!
of the world coordinate system OXYZ is set at the lens CCf‘“rng
camera, and the Z axis of the coordinate system is placed :l;ﬂ)'
the optical axis. Then the 3D motion of point P can be §7° ol
represented by the rotational component @ and the transtati



component ["as follows,
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where @ and I"are represented as follows,
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where the rotation matix & can be described as follows,

® =| g;05(1-cos@) + o3sin & o+ (1-0)cosb

where 8 and (0y, 02, 03 ) denote the rotation angle and the
rotation axis respectively. Then the unit cosine vector can be
written as

6}2'*'0'22“3'0'32 =1 .

The relations between ¢; (i = 1 to0 9) and their parameters 6,
G}, 0, 03 yields a nonlincar function. It is, however,
possible 1o solve a pair of solution sets of 8, o, 02, 03
[Tsai and Huang, 1984]. The two solutions are dual and the
difference of them is based on whether the parameters are
described in cw or ccw. Hence as the difference can not be
discriminated physically, they can be assumed as the same. Here
the relations between two points in the 3D world P(X, Y, Z)
and P'(X’, Y", Z"), and their projeciion onto image plane
P(x,y) and p’(x’", y) are given as follows,

=& =L =X y'=L
x Z )y Z ,I Zt ly zn M (4)

{22 Relative Motion between Feature Points of an Object
w. Here we introduce a new Cartesian coordinate system

‘AT oA

OXYZ whose origin O issetatthe end-point of line segment
as shown in Fig.3. Then another end-point can be
{Tpresented as M(m;, m3, m3) in this coordinate system. The
{mf“sPOnding point after motion can be represented as
\‘hc ’I’fl'. my’, m3), where M.V and M"* are the vectors ann%
ang ::cjscgm.cnts. The rclanoz}s between the vectors M, M
. €It projection onto the image plane (r, 5), {r', 5") are

§lven a5 follows,
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Thm“gm)' the motion between M and M’ is represented only by
Fotation matrix @ as follows,
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Fig.3 The Coordinate system relative 1o the point P



M = oM | 6

Here we introduce parameters 1 and 1’ defined as follows,

. m;
R SO =—73_ 14!
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we obtain the following equations,
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For each line segment before and after motion we define unit
vectors along the line segments as / and /' respectively,
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Substituting Eq.(9) into Eq.(8), we get the following equations,

M=(Z+m)IN|I ,

M = (Z +m)|N' | I (10)

M and M’ has the same length, because they are relatively
represented and denote the same line segment. As the Z
components of the coordinates of the end-points Z+m3 and
Z'+mj3’ are positive, we can define the following value K
from Eq.(10),

2t mi - INT
Z+my - [N
Here it is possible to compute the value X, if r and 1" defined
in Eq.(7) could be obtained.
After Eq.(6) representing the rotation in the 3D space can be
described by using the coordinates on the image as follows,

(1)

KN = &N . (12)

In this equation the unknown parameters are &, t and £

2.3 Relationship between Pre and Post-Motion Vector Products
The relative representation of motion of two line segments
is shown in Fig.4. Here we define the relative vectors from one
end-point to another one of the line segments as M and M,
and those after motion as M;" and M,". Then relationship
between vector products of M and My, and of M;" and M)’

are given by using just the rotaton mawix & as follows,

MyxM, = & (M;xMz) . (13)
From Eq.(8) and Eq.{11) we get,
KiK;Nyx Ny = & (N xN2) . (14)

In this equation the unknown parameters are B, 17, #;°, 17 and £,
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Fig.4 The movement of two lines on the relative coordinate system

3. Esimadon of Motion Parameters

3.1 Relationship between Two Line Segments

When the correspondence between two line segments in the
3D space is found from an image, the parameters in Eq.(12) can
be obtained, and so forth the parameters in Eq.(14) from the
vector products of the line segments. In order to cover those
relationships we introduce matrices H and H' defined below,

H =[N, Ny NyxNy) ,

H = [KiN,, KaN;, KK (N x NG )) (1%)
From Eq.(12) and Eq.(14) we get,

H = OH , (16)

where @ is a unitary matrix, then we obtain the following
equation,
H'TH = HTo "oH =HTH . an

The above can be rewritten as the equations of components 25
fotlows,

i P = vz, a8

lkav; |2 = a2, a9

"

KiKaN TN, = N TN, @0

3.2 Udlization of Parallelism of Line Segments

Eq.(16) states that if the relative lengths 1 and ¢ could b
computed, it is possible to obtain the rotation matrix @ o
using the relations of two line segments. Therefore we assuﬂf"
there exists a pair of parallel line segments on a rigid objec* .
3D space. This assumption is obviously the constraint

—pxu =



obuaining a unique solution for the parameters 7 and '

When two line segments /; and Iy are paraliel, then the
directions of two line segments are the same, hence we get the
following relation from Eq.(8),

ry + X r2 + Xz
$; + 0y} = $2 + 13y2 . an
H Iz
We eliminate in Eq.(21) 2nd solve in wrms of f and 7',
Then we get,

n o= ras) = 152
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(22

Thus we can get the relative lengths ¢ and ¢ from the
assumption that there exists a pair of parallel line segments.

3.3 Motion Parameters from a pair of Paralle] Line Segments

As mentioned the above, the parameters 7 and " can be
obtained by using parallelism. It is, however impossible to
compute motion parameters, i.e. the roation matrix, by using
just the relationship between paraliel two line segments, because
the equations derived from them does no get independent.
Therefore we also introduce virtval lines which are the line
segments obtained by connecting cach end-point of two ling
segments as they don't make diagonals. The virtual lines are
shown in Fig.5a. Next we show how to obtain the relative
motion in terms of X defined in Eq.(11) by following
processes.

{1} In Fig.5a the line segments I; and /3 denote the real line,
and I3 and /4 the virtual line. At first the parameters 77,
1;°, 1 and 1" can be obtained from parallelism of line
segments Iy and [, '

{2] From the parameters #;, ¢;°, f2 and 13", we can get the
vectors Ny, N;°, N2 and Ny' which are functions of
t7,1;° 1 and t". Substituting these results into
Eq.(11) we have the ratios of vector lengths X7 and K3,
which are for the real line segments.

From next step we now get the parameter X for the
virtual line segments by using the computed parameters
'K} and K5, which are for the real line segments.

(3] Eq.(8) which defines the parameter ¢ can be rewritten as
follows,

Z+m = }l—’— . (89
We define the absolute coordinates along Z axis of cach
base-point (the origin of local coordinates system) of the
line segments as Z;, Z3, Z3 and Zy, and the relative
ones of the end-points as fij, #a, M3 and jty paying
2ttention to Z (depth) component of all points. Then the
absolute coordinates of each point is shown in Fig.5b. As
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Fig.5 Paralle! line and virtual lines

four line segments share their base/end-points each other,
we have following relationships,

Zy = L3+ g, (23)
Zr+ W o= Zg vy, @9
Zy v+ 2 =24, (25)

Zy = 2y . (26)

Here we define the ratios of vector lengths for the virtual
line segment I3 as K73, as below,

K = Zy + M3 )

Zy + 3 en
Substituting Eq.(23) into Eq.(27) we get,
Ky = £l . 28)

Z;

Substituting Eq.(8") into Eq.(28) we obtain following
equation,

zZ; 1.y Z+ gy
K i - Lo w
3=z T Z+ g
I1-1
= ﬁ-‘K[ . (29)

Thus the parameter K3 can be obtained from X;. In the
same way, the ratios of vector lengths Ky for the virwal
linc segment Iy is solved as follows,

B Z" + ‘14'
Ky = Z t L (30)
Substituting Eq.(24) into Eq.(30) we get,
_Z v
Ks = g K; (31

After all, the parameter K for the virtual line segment can
be acquired by using X for the real line segments. It is
self-evident that we can solve them even for replacing the
end-point and the base-point of the line segment. Finally
we can get components of a vector which represents a
direction of a virtual line segment, in this case I3 or Iy,
according to the next step [4].



{4] Eq.(19) and Eq.(20) hold for the virtual line segments as
well as for the rcal line segments. These are written as

follows,
+ 12
oy 12o= va g2, (199
KiKsN)TNy = NJTN; (20"

where N; and X are given from Eq.(8), Eq.(]) ctc. As
K3 =aK; from Eq.{29), Eq.(19") and Eq.(20") have
unknown parameters N3 and N3'. The unknowns N;
and N3’ can be expressed by ¢3 and 3 using Eq.(8), so
forth Eq.(19) is regarded as a second order equation with
respect 10 ¢ and (', and Eq.(20) as a first order equation.

Then we get two solutions for the above simultancous
equations. Furthermore we can seléct the unique solution
using coefficients of variation, if the image data contains
less error or noises. The selecting method will be
discussed in section 4.

On the other hand if we introduce the assumption that there
exist two pairs of parallel line segments, we can independentdy
solve each r and ¢* from the parallelism and Eq.(22). Therefore
the solutions are robust against added error or noise. The results
of this will be also discussed in secton 4.

3.4 Detection Method of Parallel Line Segments

In this section we discuss how to find pairs of parallel line
segments. The outline of the algorithm is shown in Fig.6.

At first, one or two pair of line segments are chosen
arbitrarily on the image plane, and are assumed parallel in 3D
space. Next, from Eq.{22) we get ¢ and estimate & by using
Eq.(16). By using Eq.(1) we compute translational vector [
for both the real and the virtal line segments. If the chosen line
scgmeants are parallel one another, computed vector I are all the
same. Therefore after the investigaton of all combinations of the
line segments, we get which ones are parallel. It is, however
necessary in practice o take into account the fact there exist
noise and/or quantization errors.

The experimental verification is performed as follows. Note
that there are three types of geometric relationship between a pair
of line segments in 3D space, which are described as follows,

(i) paralle],
(ii) on the same plane,
(iii) twisted location.

The results for three types of a pair of line segments by
using the algorithms shown in Fig.6 are listed in Tablel. In the
table (1), (2) and (3) denote the types of geomewic relationship
between a pair of line segments. Each pair of line segments is
assumed as parallel, and the motion parameters are estimated,
and then the wransladonal components are computed. The values

of AX/AZ, AYIAZ are computed, and then the cocefficients of
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Fig.6 The flow of the processing

variance, S.D.(standard deviation) /¥ (mecan value), are
computed. There is a large difference of the coefficients between
the type (1) and the types (2) and (3). Hence it is effective to
adopt the coefficients of the translational components in order to
validate the parallelism of a pair of line segments. 1t is, however
difficult to validate the parallelism, if the added noise increases
100 much because of the fact that the coefficients of type (1) also
increase as the noise increases.

Next, the results for two pairs of line segments are listed in
Table2, where the added noise is 0.1% of cach coordinates value
of all points. The table shows that it is possible 1o adopt the
coefficients of variance in order 1o validate the parallelism of line
segments for all combinations of the geometric relationship (type

a, -, ).

4. Experiment

4.1 Esimation of Motion Parameters

The estimation of the motion parameters are performed for
one or two pairs of parallel line scgments on the same plane (Se¢
Table 3). The set of terminal points of four line segments as the
input data is one of the examples which Huang's method could
not solve {Tsai and Huang, 1984). The experiment is 1:>crf01’ﬂ'“’d
as follows. ;

At first, the terminal points of the line segments are given as
(Xi5 Yijo Zij), i=1,+4, j=1,2. Next, the rotational and
wanslational components are given, and then we get ‘hf'
coordinates of the terminal points after the motion as Kij»
Yis Zy), i=1,+,4, j=1,2. All the points are projected onto
the image plane by using Eq.(4) and are added random noises
according to their values. Then values r; =X - Xjj and 5; ©
¥ip - ¥i1 are computed. The reason why we added the raﬂd?m
noise is that we must take into account the error of quamiwncm
and miss-correspondence of the line segments between images:

— %4 —



In error free case, the estimated motion parameters are listed
in the second column of Table 3, and coincide with the true
values. This implics that this method is capable even when there
exist more than six points on the same plane, on the other hand it
is not by Huang's mcthod [Tsai and Huang, 1984]. In addition,
our method can get the solution with the same accuracy, even if
the translational componcats along X or ¥ axis get zero or if
the rotational component is too small.

The next results are for a pair of line segments with 0.1%
random noise (See line segment 1,2 of Table3 below). In this
case we have two solutions from Eq.{19). However we can
select one plausible solution according 1o the coefficient of
variance. In the Table3 the coefficient of the first solution
(shown in third column) is much smaller than that of the second
one (shown in fourth column). Hence we can select the first one
as plausible solution. This means that the coefficients can be
used 10 select-a plausible solution, even when the added random
noise gets large.

4.2 Error effected by adding Random Noise

In order to examine the effects of the quantization error to
the solution, we have experiments for the terminal points of line
segments with 0.1%, 0.5%, 1% and 2% errors. The results for
two pairs of parallel line segments are shown in Table 4. From
the results our method is sufficiently robust for about 0.1%
noise addition. Especially the rotational components are much
accurate, even when random noise is added.

3. Concluding Remarks

In this paper we proposed a new linear algorithm to estimate
E‘D motion parameters of a rigid object from two sequential
Images by using parallelism of a pair of line segments. We
formulate the motion in 3D space by means of the relative
Coordinate systems paying attention to the line segments on the
Surface of the object, Then the motion can be described only by
the rotational components, and hence we get the nine nonlinear
®Quations. We derived that if there exist a pair of parallel line
Sgments, the nonlinear equations can be resolved into the linear

Snes. We also give a method to extract pairs of parallel line’

Segments,

The present method seems especially effective for a
p:mlﬂPiPﬁd object, because there must exist parallel line
&ments on the surface of the object. When the motion
p aj:q‘”)_f is smooth, it is not difficult to catch up with the
“r2llel line segments. In addition, as the method achieves the
car Solutions, the algorithm is very simple and runs very fast.
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